Epidemiologic Perspectives &

@)
Innovations k’

BiolVled Central

Methodology

Methods for stratification of person-time and events — a
prerequisite for Poisson regression and SIR estimation
Klaus Rostgaard

Address: Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, DK-2300S Copenhagen, Denmark
Email: Klaus Rostgaard - klp@ssi.dk

Published: 14 November 2008
Epidemiologic Perspectives & Innovations 2008, 5:7 doi:10.1186/1742-5573-5-7

Received: 4 October 2006
Accepted: 14 November 2008

This article is available from: http://www.epi-perspectives.com/content/5/1/7

© 2008 Rostgaard; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction: Many epidemiological methods for analysing follow-up studies require the
calculation of rates based on accumulating person-time and events, stratified by various factors.
Managing this stratification and accumulation is often the most difficult aspect of this type of
analysis.

Tutorial: We provide a tutorial on accumulating person-time and events, stratified by various
factors i.e. creating event-time tables. We show how to efficiently generate event-time tables for
many different outcomes simultaneously. We also provide a new vocabulary to characterise and
differentiate time-varying factors. The tutorial is focused on using a SAS macro to perform most of
the common tasks in the creation of event-time tables. All the most common types of time-varying
covariates can be generated and categorised by the macro. It can also provide output suitable for
other types of survival analysis (e.g. Cox regression). The aim of our methodology is to support
the creation of bug-free, readable, efficient, capable and easily modified programs for making event-
time tables. We briefly compare analyses based on event-time tables with Cox regression and
nested case-control studies for the analysis of follow-up data.

Conclusion: Anyone working with time-varying covariates, particularly from large detailed
person-time data sets, would gain from having these methods in their programming toolkit.

Introduction may be increasingly important in the analysis of follow-

Some of the most common analytic epidemiological
methods are based on calculating and comparing rates of
occurrence of events in follow-up studies. Some of these
methods work in exact, continuous time (e.g. standard
Cox regression), while others are based on the assump-
tion of constant rates of occurrence of events within strata
of the data, so that tables of person-time at risk and
number of events stratified by various factors, known as
event-time tables, are sufficient for such analyses. Stand-
ardised mortality ratios (SMRs), standardised incidence
ratios (SIRs), Poisson regression and associated additive
rate models all require such data sets [1-3]. Such methods

up studies [4].

The stratification of individual follow-up time by age, cal-
endar period and other variables, and subsequent aggre-
gation of follow-up time and events over individuals
within these strata, does not pose much of a challenge the-
oretically. Nevertheless, "the creation of an adequate
event-time table is often the most difficult aspect of carry-
ing out analyses of rates using Poisson regression" [1]. To
begin with, there is often a non-trivial amount of book-
keeping involved, along with the need for handling of
anomalies in the raw data that arise due to the discretisa-

Page 1 of 16

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19014582
http://www.epi-perspectives.com/content/5/1/7
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Epidemiologic Perspectives & Innovations 2008, 5:7

tion of time, typically with days as the finest unit of time.
Therefore, there is a desire for a methodology and a user
interface that permit fast, bug-free programming, as well
as for easily readable programs and documentation. Fur-
thermore, the computing resources required for creation
of detailed event-time tables from large data sets may be
prohibitive. This problem is even more likely to occur in
the common situation where there are several different
outcomes of interest, with accompanying variations in
person-time.

We will present a new method for handling this situation,
taking advantage of the fact that typically most follow-up
time will be free of all outcomes. We will also discuss our
preferred solutions to many of the typical problems
encountered in event-time table creation and provide a
new vocabulary to characterise and differentiate time-var-
ying factors. The tutorial uses a macro for the most stand-
ardised tasks in the creation of event-time tables. Through
its data interface and user interface, the macro offers new
and improved programming possibilities for handling sit-
uations with many outcomes simultaneously or with time
factors representing current status or with follow-up when
the origin-defining event has not yet occurred or when
using time factors growing alternately at the speed of time
or not at all (e.g. cumulative employment). The macro
and illustrative examples are coded in SAS [5]. Since in
many applications of Cox regression, we need to stratify
individual follow-up time by factors like number of chil-
dren and place of residence, we will also show the useful-
ness of the macro and the methodology for producing
data for Cox regression analyses of this type.

We think the presented methodology supports the crea-
tion of bug-free, readable, efficient, capable and easily
modified programs for making event-time tables. There
are many other macros, tools and programs available for
making event-time tables. However, most of these are spe-
cialised or limited in their capabilities, while others, such
as epicure [6] and OCMAP [7], require additional costly
software to run. In our view, the methods described in this
paper and the attached freely available macros [8], form
the best available starting point for analysis of follow-up
studies based on event-time tables in a popular general-
purpose statistical software package.

Few published papers [9,10] contain general event-time
table methodology, in the sense of proposing ways of
dealing with all types of time-varying factors. Most papers
in the field have presented software with limited or spe-
cialised capabilities. Therefore, in our experience, many
users of these techniques have often had little guidance in
event-time table construction beyond help from experi-
enced colleagues. This paper focuses on examples of the
most common approaches to creation and analysis of

http://www.epi-perspectives.com/content/5/1/7

event-time tables. Executable source code for the exam-
ples is included in [8].

Tutorial on creation of event-time tables

Figure 1 shows a model based on event-time tables. The
common theme to these models is the assumption that
the hazard rate of some event for any individual varies
over time according to factors that are either discrete (e.g.
number of births) or discretised versions of underlying
continuous variables (e.g. age). In order to draw statistical
inferences, we do not need individual records for each
cohort member, but can instead use tables of person-time

A
-
L -
e
L ey
_é/——
/"/
e
4
.///
- -
t
—
—
| —
L
/é
Fa s
el
—————————————————— _ | —
~ Ve
= ~
-
= i
Figure |

A model for which parameter estimation can be
based on an event-time table. We assume that the inci-
dence rate h(...) for some event depends only on three time-
varying factors, namely age and time since last pregnancy,
suitably categorised, and number of births. Each combination
of levels of the three time-varying factors defines a stratum
within which the incidence rate is constant, leading to piece-
wise constant incidence rates. The graphs show the changing
values of the time-varying factors ("exposures"), the changing
values of the stratified time-varying factors (the fat lines) and
the resulting incidence rate during follow-up of one person.

Page 2 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

at risk and number of events stratified by time-dependent
factors; such tables are known as event-time tables [1]. An
event-time table, then, is merely a data set used as input
for a statistical analysis, and conveys useful information
in tabular form only in extremely simple situations.

The process of converting raw data to results using event-
time tables consists of four steps:

1) pre-processing (retrieval and formatting of data as input
to step 2),

2) stratification by time-dependent factors (including con-
stants) and aggregation,

3) post-processing (e.g. generating data for SIR analysis
from age- and sex-specific rates and risk time and events
stratified accordingly) and

4) analysis (e.g. estimation and testing).

Sometimes, some of these steps may be trivial. This text
presents a macro (which we refer to as "the macro") for
performing some or all of step 2. We provide only limited
discussion of step 4, as it involves statistical considera-
tions that may differ across studies. The following exam-
ples show what happens to the data records from one or
two persons to illustrate the workings of the macro in con-
junction with other necessary programming steps. These
examples do not illustrate real world applications and the
reader will not see the effect of aggregation.

Single outcome follow-up study: Pre-processing

In this example (figure 2), we follow a cohort of persons
from some time point to a particular outcome (here,
death), with the data to be analysed using Poisson regres-
sion. We assume that each record (observation) in the
input data set contains all relevant information about a
person being followed. We want each person to enter the
study at a time point captured by the variable entry and
exit from the study at a time point captured by the variable
exit. In our example, entry is the start of the study or birth,
whichever occurs later, and exit is the point at which fol-
low-up ends for a reason other than the occurrence of the
outcome (e.g. end of study, migration, etc.). The macro
then removes persons from risk if an outcome occurs
before exit. The interval entry to exit is interpreted as
including entry and excluding exit. We assume that if an
outcome occurs, it occurs at a time captured by the varia-
ble deathdate; otherwise this variable is set to missing.

Single outcome follow-up study: Stratification and
aggregation

The user interface for the macro (%stratify) is designed to
resemble that of a SAS procedure and is therefore not typ-

http://www.epi-perspectives.com/content/5/1/7

DATA: studybase

idnr sex birthdate entry exit deathdate
1 1 ©1JAN1935 01JAN2000 01JAN2008 ©1JAN2005
2 2 0O1JAN1940 01JAN2000 01JAN2008

%stratify(options data=studybase out=py
scale=365 25 mode=single eventtime=deathdate;

class sex;
axis yr o= cuts=0 to 8 by 1;
axis age o=birthdate cuts=)

DATA: py - (re-)sorted to facilitate reading

sex yr age events pyrs
1 0 60 0 0 00068
1 (] 65 0 0 99932
1 1 65 0 1 00000
1 2 65 0 1 00000
1 3 65 0 1 00000
1 4 65 0 1 00000
1 5 65 (4] 0 00068
1 5 70 1 0 00411
2 0 60 0 1 00000
2 1 60 0 1 00000
2 2 60 0 1 00000
2 3 60 0 1 00000
2 4 60 0 1 00000
2 5 65 0 1 00000
2 6 65 0 1 00000
2 7 65 0 1 00000

5
data py; set py;
logpyrs=log(pyrs);
yr=yr+ H
run;

proc genmod;
class sex age yr;
model events=sex age yr
/d=poisson offset=1logpyrs;
run;

Figure 2
Program outline for analysing follow-up data with
one outcome using Poisson regression.

ical of a SAS macro. However, all macro statements and
some of the statement components become macro varia-
bles within the macro. In the notation, we have italicised
SAS variables, data sets and values, and capitalised macro
variables. The macro takes the input data set (studybase)
and stratifies the time intervals from entry to exit and the
event times by year and age. A stratified version of time
since some event is obtained by inventing a time axis with
the event as the origin and some cut points along the time
axis, where we denote the interval from one cut point to
the next by the value of the interval's left endpoint. Each
time axis is given a variable name (here, yr and age), an

Page 3 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

origin (e.g., birthdate for the age axis) and some cut points,
relative to the origin. The input data time points (entry,
exit, the various origins) for a given person have to be on
the same time scale, with calendar time as the obvious
choice. By using the SCALE macro variable, it is possible
to let the input data time points be SAS dates, while the
specification of the cut points is in time units such as years
(obtained by setting SCALE = 365.25, the default value).
Thus in this example, where the input data time points are
SAS dates, the second time axis is stratified into 0-49, 50-
59, 60-64, 65-69, 70+ years since birth, with the variable
age receiving the value of the interval's left endpoint. Note
that the right-most interval for each time axis is always
open-ended on the right.

We end follow-up on exit or the date of occurrence of the
outcome (+ 1), whichever occurs first. Adding a day to the
date of occurrence of the outcome ensures that all persons
who experience an event contribute at least one day of risk
time. The size of this overhang is specified by the macro
variable GRANULARITY, which by default is set to 1. In
most situations, we do not know when things happen
with greater precision than a day, so it is reasonable to
assume that people are at risk throughout the day on
which the outcome occurs. We signal our intent to end
follow-up upon occurrence of a single outcome by speci-
fying MODE = single. We also need to specify which vari-
able captures the time of occurrence of the outcome; this
is done by specifying the value of the macro variable
EVENTTIME.

Finally, the output from the macro is aggregated, meaning
that the output data set (which is the event-time table,
here called py) is the smallest possible summary of per-
son-time and events stratified by the specified factors. The
macro stores the number of events and the person-time in
variables called events and pyrs, respectively. Thus in this
example, py contains one record for each combination of
the variables sex, age and yr with either events > 0 or pyrs >
0. The macro obeys the SAS convention that if no input
data set is specified, the last data set created will be used
as input. Similarly, if no output data set is specified, the
macro will overwrite the last data set created. In this exam-
ple, the small deviations from one year at risk observed in
each output record are due to the incongruence of actual
time and calendar time, and the granularity.

Single outcome follow-up study: Post-processing

This step is trivial in this example, as we only construct a
variable to be used in the analysis and recode another var-
iable so it has a recognizable appearance.

Single outcome follow-up study: Analysis
Suppose we want to estimate incidence rate ratios for the
effects of age adjusted for sex and calendar year. In terms

http://www.epi-perspectives.com/content/5/1/7

of a parametric function for the rates, the log likelihood
under the assumption of piecewise constant hazard rates
is equivalent to the log likelihood that would arise if the
event counts in the table were independent Poisson ran-
dom variables. Thus, Poisson regression can be used to
estimate the parameters in this model [1,3].

The model formulated in figure 2 specifies that the
expected number of events for the ith observation in py is
exp(X;B)T;, with independence between observations and
variation equal to the expected number of events, with X;
specified in the model statement and T; denoting the risk
time, specified by the offset. Incidence rate ratios and con-
fidence limits are immediately available by exponentiat-
ing the parameter estimates and their confidence limits.
Additional modelling, stratifying and testing is also possi-
ble.

Standardised incidence ratios for multiple outcomes: Pre-
processing

In this example, we will calculate SIRs for many different
disease outcomes for the same cohort (figure 3). We sup-
pose each record in the data set (studybase) contains all rel-
evant information about a person in the cohort except the
outcomes, which are in a different data set (ytsi) where
each observation contains the first occurrence of a given
disease (disease), the time of occurrence of the disease
(eventtime) and a unique person identifier (idnr). To sim-
plify the presentation in this and the following examples,
all input data time points will be in decimal calendar
years, thereby avoiding the consequences of the incongru-
ence of actual time and calendar time.

In the construction of the event-time table, we should
mimic the process by which events and time at risk for the
reference rates have been created. Reference rates are com-
monly calculated using incident cases and person-time
based on population figures, ignoring prevalent cases. In
that case, follow-up should not end with the occurrence of
an outcome.

Standardised incidence ratios for multiple outcomes:
Stratification and aggregation

We assume that sex-, age, and period-specific incidence
rates for each disease in a given population are available,
so we stratify in the same way that the available reference
rate data set is stratified (perm.rates). Within the macro,
data (studybase) and outcomes (ytsi) are linked using the
personal identifier (specified by SUBJECT = idnr). We also
need to specify EVENTTIME, the variable capturing the
time of occurrence of the outcomes. Records where entry >
exit are ignored by the macro. Similarly, the macro ignores
events for which there is no matching segment of time at
risk, requiring that the data set (DATA = ...) contain a
record with entry < EVENTTIME < exit for the same person

Page 4 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

DATA: studybase
idnr sex birthdate entry exit
1 1 1983 0 2000 © 2008 @
2 2 1983 © 2000 0 2008 0
DATA: ytsi
idnr disease eventtime
1 1 2003 5
2 2 2005 5

3
%stratify(data=studybase outcomes=ytsi out=yt
eventtime=eventtime eventtype=disease
mode=i noeventvalue=0 subject=idnr scale=1;
class sex;
axis age o=birthdate c=0 to by 5;
axis yr o= c= to by 2);

DATA: yt - (re-)ordered to facilitate reading

sex disease age yr events pyrs
1 4] 15 2000 %] 2
1 0 15 2002 [1
1 0 20 2002 %] 1
1 1 20 2002 1 [%]
1 0 20 2004 4 2
1 4] 20 2006 0 2
2 [%] 15 2000 0 2
2 4] 15 2002 0 1
2 4] 20 2002 0 1
2 %] 20 2004 0 2
2 2 20 2004 1]
2 %] 20 2006 0 2

5
%obsexp(data=yt,ratedat=perm rates,out=sirdata,
eventtype=disease,noeventvalue=0,
byvars=sex, adjvars=sex age yr);

data a; set sirdata; logexp=log(expected); run;

proc genmod;

model events= /d=p offset=logexp lrci;
by disease sex;

run;

Figure 3

Program outline for analysing follow-up data using
standardised incidence ratios for many different out-
comes simultaneously.

(SUBJECT = ...) in order for the event to be tallied in the
output data set (OUT = ...). This output data set contains
two types of records: those containing only risk-time
(events = 0) and those containing only number of events
for each disease (pyrs = 0). To distinguish between the two
types of records in a simple way, we assign a special value
to the disease variable for risk-time contributions without

http://www.epi-perspectives.com/content/5/1/7

a disease event (NOEVENTVALUE = 0 in this example).
We specify that we intend to produce this type of output
by setting MODE = i; for this mode of operation, we also
have to specify the variable distinguishing the multiple
outcome events we want to study (EVENTTYPE = disease).

Standardised incidence ratios for multiple outcomes: Post-
processing

We make use of another macro (%obsexp) to calculate the
observed and expected number of events from an event-
time table in this format. This macro produces an output
data set (sirdata) containing the observed and expected
number of events and person-time at risk for each combi-
nation of the levels of the variables specified in the
EVENTTYPE and BYVARS macro variables (disease, sex). In
order for the macro to calculate the expected number of
events, it needs a data set containing rates (perm.rates)
stratified by the variables specified in EVENTTYPE and
ADJVARS. Obtaining correct results requires variable
names and coding to be the same in the input data for this
macro and the rate data set. Extra programming may be
required to standardise the data sets in this way.

Standardised incidence ratios for multiple outcomes:
Analysis

The output from proc genmod provides the log(SIR) and
accompanying likelihood ratio-based confidence limits
for each combination of disease and sex. Using general-
ised linear modelling makes it possible to obtain likeli-
hood ratio-based confidence limits, which are preferable
even to accurate approximations such as Byar's formula
[ref [3], page 68-71], which can no longer be justified by
computational expediency. A modelling approach is also
preferable when we want to test the homogeneity of the
SIRs over categories.

Competing risks follow-up study

This example shows how to analyse competing risks (fig-
ure 4). Here the follow-up ends upon censoring or the first
occurrence of an event for a given person i.e. the follow-
up time is the same for all events considered. We signal
our intention to do this type of analysis by setting MODE
= ¢, and need to introduce a factor with categories denot-
ing possible outcomes (EVENTTYPE = disease), with a spe-
cial category to denote follow-up time (NOEVENTVALUE
= 0). After stratification and aggregation, we can separate
the output data set (b) into a person-time data set and an
event data set, based on the value of the above-mentioned
factor (disease). We make a copy of the person-time data
for each outcome and combine these data with the event
data generated for that outcome to generate sufficient data
for this type of analysis [11]. In order to test whether the
exposure acts differently on the various diseases consid-
ered as outcomes, a disease-exposure interaction term is
added to the model statement in proc genmod. For exam-

Page 5 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

DATA: studybase

idnr sex birthdate entry exit exposed
1 1 1983 @ 2000 0 2008 © 1
DATA: c
idnr disease cancerdate icd7

1 1 2003 5 2009

1 2 2005 5 1437

%stratify(data=studybase out=b
outcomes=c eventdat=closelook

mode=c eventtype=disease noeventvalue=0
eventtime=cancerdate subject=idnr
scale=1 granularity=0 001;

eventid idnr icd7 cancerdate;

class sex exposed;

axis age o=birthdate c=0 to by 5);

DATA: b

sex exposed disease age events pyrs
1 1 0 20 0 0501
1 1 0 15 0 3 000
1 1 1 20 1 0 eeo

DATA: closelook
sex exposed idnr cancerdate icd7 disease age
1 1 1 2003 5 2009 1 20

H
data b; set b;
if disease ne 9 then output;
if disease=0 then do;
do disease=1,2; output; end;

end;

run;

DATA: b

sex exposed disease age events pyrs
1 1 1 20 0 9 501
1 1 2 20 0 0 501
1 1 1 15 (] 3 000
1 1 2 15 (] 3 000
1 1 1 20 1 0 000

proc summary nway;
class disease sex age exposed;

var events pyrs;

output out=comp(drop= freq type) sum= ;

run;

DATA: comp

disease sex age exposed events pyrs
1 1 15 1 (] 3 000
1 1 20 1 1 0 501
2 1 15 1 (] 3 000
2 1 20 1 (] 0 501

data comp; set comp; logpyrs=log(pyrs); run;

H
proc genmod;
class sex age exposed disease;
model events=disease disease*sex disease*age
exposed disease*exposed
/d=p offset=logpyrs typel;
run;

Figure 4

Program outline for analysing competing risks. The
competing risks analysis presented here is a general one and
is not restricted to the situation where the outcomes pre-
clude additional events from occurring. Instead, we analyse
competing risks for the occurrence of the first outcome
event.

http://www.epi-perspectives.com/content/5/1/7

ple, the various diseases could be subtypes of a single can-
cer.

In this example we have also used EVENTDAT = closelook
and EVENTID idnr icd7 cancerdate, which together cause
the macro to produce an extra data set (closelook) that con-
tains a record for each outcome event with all the varia-
bles produced for the event-time table, except pyrs and
events, plus whatever extra variables are specified by
EVENTID. This feature is useful for checking exactly which
events contribute to which strata. Alternatively, we may be
performing an SIR analysis based on broad disease catego-
ries, because those are the background rates we have, but
in actuality, our hypothesis is that the exposure of interest
will induce a surplus of a specific disease subtype, and we
can then have an informal look using the EVENTDAT
option.

Multiple outcomes follow-up study

Finally, suppose that we wish to follow several outcomes
where follow-up for a given outcome ends when the out-
come occurs (figure 5). For typical outcomes, most fol-
low-up time will be disease-free, so the method that is
computationally simplest for generating the event-time
table is to calculate all the potentially available person-
time once and then for each disease subtract the person-
time contributions after the occurrence of the event (i.e.,
after EVENTTIME + GRANULARITY). Part of this calcula-
tion is done within the macro (specified by MODE = m),
and part of it has to take place in the post-processing step
where the value (# NOEVENTVALUE) of the variable dis-
ease (EVENTTYPE) signals the excess disease-specific risk
time.

The usual way to generate event-time tables for multiple
outcomes is to generate output data sets for one outcome
at a time (possibly via code packaged into a macro) and
then combine all these data sets for analysis. This usually
takes much longer than our alternative and saves little, if
any, coding work.

Why aggregate the event-time table?

We compared our method (aggregating the output from
the stratification step) with a no-aggregation method on a
typical PC using data from Nielsen et al. [12]. In this
study, a cohort of Paul-Bunnell-tested persons was fol-
lowed for multiple sclerosis, the effect of positive versus
negative Paul-Bunnell status was estimated, adjusting for
calendar period, sex, attained age and time since test. The
standard output from %stratify contains 11,113 observa-
tions. It takes 2 seconds to run %stratify and 1 second for
proc genmod to produce parameter estimates. If we add
personlID to the list of class variables (corresponding to no
aggregation), the event-time table produced by %stratify
now contains 1,740,876 records, and it takes proc gen-

Page 6 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

H
DATA: studybase
idnr sex birthdate entry exit
1 1 1980 0 2000 0 2008 @

proc sort data=cancer out=c;
by idnr disease cancerdate ;

data c; set c; by idnr disease;
if first disease;

run;
DATA: ¢
idnr disease cancerdate
1 1 2003 5
1 2 2005 5

5
%stratify(data=studybase out=b outcomes=c
scale=1 granularity=0 001
mode=m eventtype=disease noeventvalue=0
eventtime=cancerdate subject=idnr;

class sex;
axis age o=birthdate c=)5
DATA: b
sex disease age events pyrs
1 0 26] 2 000
1 0 23 0 3 000
1 0 20 0 3 000
1 1 26] 2 000
1 1 23 1 2 499
1 2 26 0 2 000
1 2 23 1 0 499
5
data b; set b;
if disease ne then do;

pyrs=-pyrs; output;
end;
if disease=0 then do;
do disease=1,2; output; end;

end;

run;

DATA: b

sex disease age events pyrs
1 1 26 2] 2 000
1 2 26 7] 2 000
1 1 23 0 3 000
1 2 23 0 3 000
1 1 20 7] 3 000
1 2 20 2] 3 000
1 1 26 0 -2 000
1 1 23 1 -2 499
1 2 26 0 -2 000
1 2 23 1 -0 499

proc summary nway data=b;
class disease sex age;
var events pyrs;
output out=multi
(drop= freq type where=(pyrs>0)) sum= ;

run;
DATA: multi
disease sex age events pyrs
1 1 20 0 3 000
1 1 23 1 0 501
2 1 20 0 3 000
2 1 23 1 2 501
Figure 5

Program outline for generating a data set for Poisson
regression for many outcomes simultaneously.

http://www.epi-perspectives.com/content/5/1/7

mod more than 2 minutes to produce parameter esti-
mates.

In the appendix, we compare different aggregation
approaches and conclude that the macro's new default
method (METHOD = fst) is fastest and that the typical
analyst is unlikely to need any of the other aggregation
methods available in the macro. However, if the default
method requires too much RAM, METHOD = sum or
METHOD = chunk could be used instead (see appendix
for further details).

Types of time-varying factors

We have found only two papers [9,10] that cover exact
stratification by all types of time-varying factors. The
method proposed by Wood et al. [9] is simple, robust and
general, covering all types of time-varying factors in the
same way. Our main criticism of this approach is that as
the number of persons in the study and the complexity of
the exposure history to be represented increase, the time
and temporary memory required become prohibitive; a
computationally more efficient approach is therefore in
order. Macaluso [10] presents several methods, one of
which is general enough to handle all types of time-vary-
ing factors. This approach, however, has the same draw-
backs as the approach by Wood et al. [9], although not to
the same extent.

We have invented a new classification of time-varying fac-
tors, extending and modifying the classification used by
Macaluso [10]. We consider the new classification to be
helpful in organising and programming the event-time
table generation, because there is a clear correspondence
between types of time-varying time factors and the tools
and programming techniques that can be applied to strat-
ify them.

We distinguish between four types of time-varying factors
(zero-rate, unity-rate, bit-rate, and flex-rate time factors),
defined by the possible rates of change in each. Zero-rate
time factors include factors which are constant (e.g. sex,
race) and factors which are constant between status
changes (e.g. number of pregnancies to date, number of
jobs held to date, current marital status). Unity-rate time
factors, such as age, period, and time since last pregnancy,
change at a dimensionless rate of 1, because the changes
in the numerator and denominator are the same. In bit-
rate time factors, the rate of change will be 0 in some fol-
low-up intervals and 1 in others. A typical example is
cumulative length of employment, growing at a rate of 1
during periods of employment and a rate of 0 during peri-
ods of unemployment. With flex-rate time factors, the rate
of change can take any value. A typical example is the
cumulative number of cigarettes smoked to date. This
nomenclature places fewer time factors in the most com-

Page 7 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

plicated category (here, flex-rate) than does Macaluso [10]
and is more descriptive. Using the example in figure 1, the
hazard function depends on a, nb, and t_s_lb, which are
stratified versions of the time factors age, number of births
and time since last birth, respectively. Age and time since
last birth (when defined) change at the same rate as ¢ (i.e.,
with slope = 1) and therefore are unity-rate time factors,
whereas number of births is constant between births and
is therefore a zero-rate time factor.

Zero-rate time factors that are not constant should be han-
dled by stratifying the follow-up time into intervals where
these variables are constant, prior to stratification by other
types of time-varying factors. Note that zero-rate time fac-
tors are distinct from other time-varying factors in that for
zero-rate time factors, the input data contain time points
at which the value of the stratified version of the time fac-
tor might change, whereas for other time-varying factors,
we must calculate the time points at which the value of the
stratified version of the time factor does change.

The only complication with unity-rate time factors occurs
if the origin of a time scale is either absent or changes dur-
ing follow-up, as it may for unity-rate time factors such as
time since last pregnancy or time since last hire. In such
instances, the input data must be stratified into intervals
with only one (possibly missing) origin for each time
scale before stratification by unity-rate time factors; in
other words, the input data should first be stratified
according to the zero-rate time factor "last occurrence of
the origin-defining event". When a time scale origin is
missing, the macro assigns the value of the largest speci-
fied cut point for that time axis to the relevant variable for
the given event or risk-time contribution. For example,
suppose that we are following a cohort of women for inci-
dent ovarian cancer and want to include time since last
pregnancy as an explanatory variable. Specifying e.g. 0, 1,
2,3,5,7,10, 15, 25, and 999 years as cut points for the
time since pregnancy time axis ensures that only contribu-
tions from never-pregnant women are assigned to the 999
category, which also forms a natural reference category
when analysing this factor as a categorical variable.

In principle the procedure for dealing with unity-rate time
factors is easily extended to allow for handling of bit-rate
time factors. We divide the follow-up time into intervals
with constant rates of change in the bit-rate time factors
and process these intervals in chronological order, carry-
ing over pertinent information from previous intervals to
the one being processed.

With flex-rate time factors, stratification of follow-up time
requires situation-specific programming. To minimise
programming time and for ease of documentation, we
strongly recommend doing this as part of the pre-process-

http://www.epi-perspectives.com/content/5/1/7

ing step, with the output identical to that generated for a
zero-rate time factor. As a general methodology, Wood et
al. [9] suggest stepping through the follow-up time for
each individual in steps corresponding to the finest gran-
ularity of time in the data (typically days), in each step
identifying one stratum to assign the risk-time contribu-
tion to and outputting the results. While simple, and
therefore robust, such an approach can rapidly generate
enormous amounts of temporary data. However, this
approach may be useful for identifying time points where
the value of the stratified version of a flex-rate time factor
changes and outputting these and relevant attributes to be
combined back into the raw data in the same way as other
such points of change. In our experience flex-rate time fac-
tors are rarely used and require ad-hoc programming, so
we will not discuss them any further.

Handling zero-rate and bit-rate time factors with the
macro

In our experience, almost all non-constant zero-rate time
factors requiring stratification can be categorised into a
few distinct categories (has the exposure occurred?, age at
last exposure, age at first exposure, number of exposures
to date, etc.). The macro takes advantage of this feature to
stratify zero-rate time factors in a simple way. The user
provides one or more exposure data sets (EXPDATS ...),
each of which contains a variable containing an individ-
ual person identifier (SUBJECT = ...) allowing for linkage
to the studybase; a character variable signalling which
exposure event has occurred (EXPEVENT = ...); a variable
indicating the time when the exposure event occurred
(TIME = ...); and a variable containing a numeric (VALUE
= ...) or character (VALUEC = ...) attribute of the exposure
event, plus a line of code generating the stratified zero-rate
time factor (ZRTF ...). The alternative to all this is repeti-
tion of very similar pieces of code for each factor outside
the macro. Furthermore combining time-varying expo-
sures from different data sets is traditionally non-trivial.

In figure 6, we follow one person (in studybase) and have
two data sets containing exposures (EXPDATS workout res-
idence). Since we use the default values for EXPEVENT,
VALUE and VALUEC, they need not be specified in %ostrat-
ify. The line ZRTF everhired generates a variable
(ever_hired) that is an indicator (v = i) for the exposure
event (c = "new_job"); for each person, ever_hired is ini-
tialised to 0, and the first time the content of EXPEVENT
is "new_job", ever_hired becomes 1. In the line ZRTF state
... we generate a character variable which takes the value
of VALUEC (v = cv) whenever the exposure event is "resi-
dence". This variable is initialised to be blank and then
retains the value corresponding to the most recent occur-
rence of the exposure event "residence" for that person. If
we had added n = 1 to this line, the variable would have
retained the value corresponding to the first occurrence of

Page 8 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

DATA: studybase
idnr sex birthdate
2 2 1983 0

entry exit
2000 © 2008 ©

DATA: residence

expevent valuec date idnr
residence MA 2001 0 2
residence CA 2004 5 2

DATA: workout

expevent cum hired idnr date value
new job (] 2 2001 ©

employed 00 220010 10
cum employed 00 220010 00
employed 15 220025 00
cum employed 15 220025 15
new job 15 2 2003 0

employed 15 220030 10
cum employed 15 220030 15
employed 30 220045 00
cum employed 30 220045 30

2
%stratify(data=studybase out=output
subject=idnr time=date scale=1
granularity=0 0001 eventtime=exit;
expdats workout residence;
class sex;

zrtf ws v=v C= H

zrtf wc v=v c= H

zrtf wc at v=t c= H

zrtf age jobl v=a c= n=1
groups=15 to by 1 missing=99;

zrtf jobs v=n c= H

zrtf ever hired v=i c= H

3
v=cv c="residence" ;

zrtf state

brtf cum work time=wc at speed=ws value=wc
cuts= 5

axis year 0=0 c= to by 1);

DATA: output - (re-)sorted to facilitate reading

age ever cum

sex jobl jobs hired state year work events pyrs

2 99 (4] 0 2000 99 0 10

2 18 1 1 MA 2001 7] 0 10

2 18 1 1 MA 2002 7] 0 10

2 18 2 1 MA 2003 0 0 05

2 18 2 1 MA 2003 2 0 05

2 18 2 1 CA 2004 2 0 05

2 18 2 1 MA 2004 2 0 05

2 18 2 1 CA 2005 2 0 10

2 18 2 1 CA 2006 2 [%] 10

2 18 2 1 CA 2007 2 0 10
Figure 6

Stratifying follow-up time by zero-rate time factors,
bit-rate time factors and unity-rate time factors.

"residence"; if we had added n = 2, it would have retained
the value corresponding to the second occurrence of "res-
idence", and so on. The default is n = L (for last).

http://www.epi-perspectives.com/content/5/1/7

In the first five ZRTF statements in figure 6, we see some
other values that the variables can take: the value (v = v),
the time (v = t) and the age (v = a) at which the exposure
event occurred. In the fourth ZRTF statement, n = 1 yields
the age at the first job, with age categorised in 1-year inter-
vals from 15 to 30 years of age. The grouping in a ZRTF
statement works somewhat differently from that in the
AXIS statement. All values are rounded down to the near-
est cut point, and all values below the smallest cut point
(along with missing values) are set to missing. For the age
calculation to work, we need the date of birth, given by
BIRTHDATE = birthdate, which is the default and so not
explicitly specified.

Some of the variables generated by the ZRTF statements
do not appear in the output. The macro has built-in logic
that decides whether such variables were needed only as
intermediate variables (e.g. the origin of some time scale)
or are of primary interest and therefore should be
included in the event-time table. All variables used to con-
struct bit-rate time factors in BRTF statements and all var-
iables generated with ZRTF statements with value = t are
dropped from the output unless saved by inclusion in the
CLASS statement. (More about bit-rate time factors
appears below.)

The macro can do many things, at the cost of having many
macro variables to assign values to. Table 1 serves as a
guide for what must be specified when in the first state-
ment, and table 2 gives an overview of the syntax for the
remaining statements. For further details, see [8]. In order
to reduce the slope of the learning curve and improve pro-
ductivity [13], we have tried as much as possible to give
the macro the appearance of a typical SAS procedure, with
entries that look like procedure options (all macro varia-
bles with a single value (table 1)) and entries that look
like procedure statements with several arguments (table
2), and we have organised our examples accordingly.

Internally, the macro works as follows: It 1) gathers all rel-
evant exposure variables from the relevant data sets, links
them and sorts them; 2) stratifies the data according to
zero-rate time factors; 3) links outcome events with the
stratified data to characterise the outcomes; 4) combines
and manipulates the exposure and outcome data accord-
ing to the value of MODE, and carries out the final prepa-
ration for handling bit-rate time factors; and 5) stratifies
the data according to unity-rate and bit-rate time factors
and aggregates the results. So ZRTF variables (ws, wr,
wc_at, age_job1, jobs, ever_hired in figure 6) are always gen-
erated before BRTF variables (cum_work), which are
always generated before AXIS variables (year), no matter
how they are ordered in %stratify. We have tried to make
the macro as clever as we could to facilitate use. For exam-
ple, when MODE = s or ¢, the outcome data can reside in

Page 9 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

Table I: Simple macro variables in the stratify macro i.e. options.

http://www.epi-perspectives.com/content/5/1/7

macro variable default value needed when meaning
DATA &syslast mandatory input data
ouT &data mandatory output data
OUTCOMES MODE = m outcome events input data
EVENTDAT outcome events output data
EVENTTIME eventtime mandatory time of outcome event
SUBJECT OUTCOMES or EXPDATS used person ID for record linkage
TIME time zrtf-stmt time of exposure events
EXPEVENT expevent zrtf-stmt exposure event
VALUE value zrtf-stmtv = v exposure event attribute, numeric
VALUEC valuec zrtf-stmt v = cv exposure event attribute, character
BIRTHDATE birthdate zref-stmtv = a birth date
SCALE 365.25 mandatory scale relation between time units for time points and cut points/PYRS
GRANULARITY | MODE = s,c,m follow-up ends at EVENTTIME + GRANULARITY
EVENTTYPE eventtype MODE = ¢,i,m type of outcome
NOEVENTVALUE MODE = c,ijm value of eventtype for person-time
MODE s(ing(le)) mandatory when and how follow-up ends

other values =

c(omp(eting))

i(ntens(ity))
m(ult(iple))

METHOD fst mandatory method of aggregation or no aggregation (noagg)

other values =

arr
sum
chunk
noagg

CHUNKSIZE 5000 METHOD = chunk see [8]

DATA or OUTCOMES, but if the latter is specified, all out-
come data will be taken from there. When VALUEC has
different lengths in different source data sets, it will be
retrieved in a variable with the length of the longest VAL-
UEC. Furthermore, the macro only retrieves required var-
iables.

Bit-rate time factors are generally more cumbersome to
handle than unity-rate and zero-rate time factors. In the
BRTF statement (figure 6, table 2), the user must specify
the value of the bit-rate time factor (value = wc) whenever
there is a change in the value (0 or 1) of the variable
describing the rate of change (speed = ws), along with the
time at which this change occurs (time = wc_at). By pro-
viding this information in ZRTF variables, we ensure that
the data are stratified into intervals in which the rate of
change in the bit-rate time factor is constant. The macro
calculates the value of the resulting zero-rate time factor at
entry into the intervals and specifies an origin defined as
time at entry minus this value. It then generates a variable
named from (BRTF ..., cum_work in figure 6) that is treated
as either a unity-rate time factor or a constant, depending
on the rate of change, and stratified according to (cuts =
...). Since this process can be cumbersome, the generation
of relevant input data set records in particular (in workout,
in figure 6), the macro also offers shortcuts. If value = ... in
the BRTF statement is not specified, the macro assumes

the value variable is zero up to and including the time
point when the speed variable is first encountered. From
then on, the macro calculates the values of the value vari-
able based on the alternating values of the speed variable
(speed = ...). When value = ... is not specified in the BRTF
statement, it is also unnecessary to specify time = The
simplifying assumption that the value of the value varia-
ble is zero before the speed variable is set should be appli-
cable in most cases, in which case we only need to
generate the speed variable in a ZRTF statement and use it
in a statement such as: BRTF varname speed = speedvar
cuts =

Output for Cox regression

In figure 7, we present an exercise very similar to the one
in figure 2, but this time prepare output for a Cox regres-
sion analysis with a single outcome. In some of the most
popular statistical packages that allow for Cox regression
with time-varying covariates (e.g. SAS[5], STATA[14] and
S-PLUS[15]), follow-up time must be stratified according
to any time-varying covariates ahead of time, which
renders %stratify very useful. Post-processing in this case
consists of calculating entry and exit on the time scale
selected for the Cox analysis (age, in figure 7) and refor-
mulating the outcome events (signalled by a missing
value of exit) as very short follow-up intervals not ended
by censoring. See [8] for examples of how to prepare out-

Page 10 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

Table 2: "Statements" and their components in the stratify macro.

http://www.epi-perspectives.com/content/5/1/7

statement or statement component Comment

ZRTF varname
I(en(gth)) =

c(ond(ition)) =

n=

v(al(ue)) =

g(roups) =
m(iss(ing))=

BRTF varname

varname must be a valid SAS variable name.

the length of varname. By default, 8 for numeric variables and the maximum length of VALUEC in
EXPDATS for character variables.

the value of the character variable EXPEVENT that will trigger the (re-)evaluation of varname. There are
restrictions on the value of this variable to avoid it interfering with the macro, but a valid SAS variable name
will always work. It must be enclosed in "".

the occurrence of the condition that will trigger the (re-)evaluation of varname. Possible values are f, first, |,
last, or any integer > 0, where | means first, 2 second etc. Last is the default.

the value of varname before grouping. Possible values are:

v (value at occurrence of condition = and n=)

s (sum of values at occurrence of condition=)

i (indicator that condition = and n = has occurred)

n (number of occurrences of condition=)

cv (valuec at occurrence of condition = and n=)

t (time at occurrence of condition = and n=)

a (age at occurrence of condition = and n=).

for a numeric variable, the specification is X to Y by Z or XY Z W or a format. For a character variable,
it is a format. No grouping occurs unless specified.

value of varname when missing. If varname is a character variable, it must be enclosed in
restrictions as for condition apply.

varname must be a valid SAS variable name.

and the same

t(ime) = variable containing the time point at which speed and value are evaluated.

s(peed) = variable containing the rate of change (0 or I) of the underlying bit-rate time factor (from time and
onwards).

v(al(ue)) = variable containing the (ungrouped) value of varname at time.

c(uts) = XtoYbyZor XYZW ...

AXIS varname varname must be a valid SAS variable name.

o(ri(gin)) = variable or constant containing the origin of the time scale

c(uts) = XtoYbyZor XYZW ...

s(peed) = variable or constant containing the rate of change. The rate of change is always | unless this variable or
constant is set to 0.

EXPDATS exposure data sets.

EVENTID extra variables to include in EVENTDAT.

CLASS stratifying variables to appear in OUT retained from DATA.

put for Cox regression in modes other than (MODE = sin-
gle).

Timing problems

A common characteristic of the stratification methods
presented here is that they are exact, meaning that every
event and person-time contribution will be placed in the
correct stratum. Many older methods for stratification are
approximate, for example, only taking into account the
status of an individual in mid-year (see [16] for an exam-
ple). We do not think the resulting errors in covariates can
be justified, given presently available computing
resources.

However, using exact stratification methods requires that
we know exactly when every exposure event and outcome
event occurred. If we do not, we must guess or use a con-
vention. For instance, if we only know that an event
occurred in a particular calendar year but not when during
the year (interval censoring), the event is usually consid-
ered to have occurred mid-year with adjustments to

accommodate such constraints as having the event occur
to a living person, because the exposure or outcome will
otherwise not be taken into account in the analysis. The
analyst should always consider in each individual study
how best to handle inaccurate or erroneous timing of
events.

In competing risks analyses, it is assumed that concurrent
outcomes will not occur [17]. However, in practice, this
occurs often. In such cases, we have to choose which of
the co-occurring outcomes occurred first to ensure a sim-
ple competing risks analysis. When the macro is used with
MODE = c and an external outcome event data set is spec-
ified, as in figure 4, the macro automatically picks the first
outcome event for a given SUBJECT, and when two or
more outcome events appear simultaneously as the first in
a SUBJECT, it picks the one with the lowest EVENTTYPE.
This decision rule is quick, easy and reproducible. How-
ever, depending on the study, more elaborate decision
rules may have to be devised and enacted by generating an
outcome data set accordingly. Coding of death certificates

Page 11 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

DATA: studybase

idnr sex birthdate entry exit deathdate
1 1 ©1JAN1935 01JAN2000 ©1JAN2008 ©1JAN2005
2 2 ©1JAN1940 0©1JAN200© ©1JAN2008

Bl
%stratify(data=studybase out=cox,
scale=365 25 method=noagg eventtime=deathdate;
class sex birthdate;
axis yr o= c=0 to 8 by 1);

Bl

data cox; set cox;

entry=(entry-birthdate)/ H
exit=(exit-birthdate)/ H
censor=1;
if exit= then do;
exit=entry+ H
censor=0;
end;
run;

DATA: cox - (re-)ordered to facilitate reading

sex birthdate yr entry exit censor
1 ©1JAN1935 © 64 9993 65 9993 1
1 ©01JAN1935 1 65 9993 66 9993 1
1 ©1JAN1935 2 66 9993 67 9993 1
1 ©1JAN1935 3 67 9993 68 9993 1
1 ©1JAN1935 4 68 9993 69 9993 1
1 ©01JAN1935 5 69 9993 70 0014 1
1 ©1JAN1935 5 70 0014 70 0015 0
2 01JAN1940 0O 60 0000 61 0000 1
2 91JAN1940 1 61 0000 62 0000 1
2 01JAN1940 2 62 0000 63 0000 1
2 01JAN1940 3 63 0000 64 00O 1
2 01JAN1940 4 64 0000 65 00O 1
2 01JAN1940 5 65 0000 66 0000 1
2 01JAN1940 6 66 0000 67 0000 1
2 01JAN1940 7 67 0000 68 0000 1

proc tphreg data=cox;

class yr sex;

model (entry,exit)*censor(l)=sex yr ;
run;

Figure 7
Program outline for analysing follow-up data with
one outcome using Cox regression.

often involves the same kind of choices, with standardised
guidelines. As an alternative to choosing one of the co-
occurring outcomes over the others, some have suggested
that combinations of co-occurring outcomes could be
outcomes in their own right [17]. Alternatively, instead of
editing the data to fit the model, the analyst could decide
to perform a more complicated analysis, using all availa-
ble information (see [18] for an example). In any case, it
is always a good idea to start by examining the data for co-
occurring outcomes.

http://www.epi-perspectives.com/content/5/1/7

Co-occurrence of exposure events may also cause prob-
lems. For example, if a person changes residence more
than once within the finest division of time used, the ana-
lyst must ensure that only the record representing the final
residence is included in the relevant exposure data set.
Otherwise, the resulting person-time table may not be
entirely correct.

Slight discrepancies between intended and actual cut
points can occur, due to variation in calendar year length.
This is especially a problem for stratifying tools that allow
scaling of one set of time points (cut points) relative to
another set of time points (entry, exit, origins). These
effects are usually negligible, although an event occasion-
ally appears in or disappears from a stratum due to such
inaccuracies. We have no generally preferred solution for
this problem. However, this general problem has impor-
tant consequences for this macro, because if the entry time
is missing or earlier than the earliest cut point on some
time axis, a fatal error occurs. This type of error usually
results from inadequate data cleaning; a data (or, alterna-
tively, programming) error that allows follow-up to start
before birth, for example, is a typical cause of a macro
error of this sort. However, fatal macro errors are also
commonly due to inaccuracies with regard to the calendar
period time axes. One way to avoid this is to choose the
origin for the time scale as the smallest cut point. For
example, if we want to stratify by calendar years 1968 to
2000 we could write origin = "01JAN1968"D cuts = 0 to
32 by 1, and later recode the variable during post-process-
ing if we wanted it to have a more familiar look. Another
way to avoid this error is to have all time scales (entry,
exit, origins, cut points) in decimal years. Macros for this
are available at [8].

Considerations in the choice of survival analysis
model

The level of complexity of the exposure history almost
completely determines the amount of work involved in a
survival analysis, regardless of the tool used for analysis.
Much of this tutorial is applicable to any type of survival
analysis with time-varying covariates. Using Cox regres-
sion and Poisson regression to solve the same problem
involve essentially the same amount of programming
with our macro (compare figures 2 and 7).

In practical terms, one should not expect noticeable differ-
ences between results from similar Poisson and Cox mod-
els, as Cox regression provides fairly efficient rate ratio
estimates, despite being based only on a partial likelihood
[19,20]. During processing the size of the data set needed
for Cox regression is proportional to the union of risk sets,
while the size of the data set needed for Poisson regression
is proportional to the number of non-empty combina-
tions of levels of the covariates. Therefore, performing

Page 12 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

Cox regression can be slow compared to Poisson regres-
sion for large data sets, and the former cannot be per-
formed at all on gigantic data sets such as the one used by
Edgren et al. [21], for which Poisson regression takes a few
minutes. Anything that can be done using Cox regression
can also be done using Poisson regression, and the exact
same results can be obtained in the absence of ties [22]. It
is now possible to perform robust estimation of parame-
ter variance [23-26] in both SAS proc genmod [27] and
SAS proc phreg/tphreg [28]. In our experience, Poisson
regression analysis of large, thinly-stratified event-time
tables typically exhibits underdispersion as measured by
the deviance but good agreement between the hypotheti-
cal (Poisson) and actual (robustly estimated) parameter
estimate variances. In our experience, overdispersion and
the subsequent risk of generating false positive findings,
are much more common in small data sets, but in such sit-
uations, robust variance estimation is now easily accom-
plished.

Cox regression forces one time scale to be a response var-
iable of special importance compared with others, and the
extremely detailed modelling of this time scale can lead to
over-interpretation of small details in the survival curve.
Interactions with this time scale are somewhat obscure
and non-parsimonious. On the other hand, Poisson
regression treats all time scales equally as covariates and
interactions between time scales and other covariates (and
time-scales) are modelled in a simple and natural way [4].
In contrast to Cox regression, Poisson regression requires
categorisation of continuous predictor variables, which
creates concerns about residual confounding and other
biases arising due to this loss of information. However,
with modern computing hardware, it should be possible
to work with such finely grouped predictor variables that
these concerns become merely theoretical. For a detailed
comparison of Cox regression and Poisson regression, see
Carstensen [4]. Note that he does not consider aggregating
data for Poisson regression, which we have shown to be
very useful for large data sets.

Other analytic approaches to survival analysis often
require data sets similar to those used for either Cox or
Poisson regression. The type of input data set used for
Markov chain Monte Carlo (MCMC) techniques and
other computer-intensive methods depends on the choice
of basic model. For computational reasons, it is typically
advantageous to use a Cox-style input data set when ana-
lysing data from small clinical trials, whereas it is advan-
tageous to use event-time tables when following large
cohorts.

It is also usually possible to analyse follow-up data using
nested case-control methods. The loss in efficiency (statis-
tical precision) compared to using the full data set in a

http://www.epi-perspectives.com/content/5/1/7

cohort study is usually small, and if the cohort study by
design has certain virtues in terms of lack of bias etc., these
properties carry over to a properly conducted nested case-
control study. The data set required for analysis is often far
more manageable, and assuming density sampling, the
determination of the values of time-varying covariates at
the time of entry into the risk set is easier than keeping
track of them throughout the follow-up period. That
being said, in our view, follow-up data should not gener-
ally be analysed using nested case-control methods,
mainly because doing so excludes many possible modes
of inquiry, such as fitting additive rate models or assessing
absolute measures of disease frequency, that may yield
important insights.

Conclusion

This tutorial has explored the capabilities of a new macro
designed to perform the most well-defined and standard-
ised tasks in event-time table creation. We have demon-
strated some of the new programming possibilities
enabled by the macro's data interface and user interface
and shown that generating event-time tables for many
outcomes simultaneously (as opposed to for a single out-
come) requires only a few extra lines of code. The main
gain from these new programming possibilities is in effi-
ciency, i.e. fast execution. However, that the macro avoids
long lists of outcomes to be analysed, or worse still, many
repetitions of almost identical code, is also of considera-
ble importance; instead, our methodology will by default
go through all the outcomes available in the relevant data
files, so that particular outcomes can be dropped or
manipulated in the program, but ordinary outcomes will
not call attention to themselves in the program. Another
novelty is that little or no ad-hoc programming is needed
to handle bit-rate time factors (time factors growing alter-
nately at the speed of time or not at all such as cumulative
employment). The macro also provides flexibility in
choosing cut points within and between multiple time
axes, an improvement compared to programs such as the
classical SAS macro by Macaluso [10], which require that
all time scales have equidistant cut points with the same
interval length for all time scales.

Our macro can handle time-varying zero-rate time factors,
something not possible in the classic SAS macros [10,29].
In the common and simple situation of having only one
type of exposure event with few attributes to consider, it
may be perfectly satisfactory to stratify data in pre-process-
ing according to zero-rate time factors. However, as soon
as there are many exposure event attributes and/or several
types of exposure event to consider, the advantages of the
macro's capabilities - in terms of both reading and writing
the code - become obvious.

Page 13 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

Competing interests
The author wrote the macros presented and may therefore
be biased in their favour.

Appendix

In this appendix, we compare different methods (three of
our own macros and some classics) for stratifying unity-
rate time factors and aggregating person-time, with respect
to time and memory requirements. Our own macros are
ancestors of the current stratify macro, in which the meth-
odology for each is implemented by specifying different
values of MODE. The items mentioned under "Future
developments" are still on the wish list for the stratify
macro.

Algorithms

We use Macaluso's method B [10] as our algorithm for
stratifying individual person-time, realising the full
potential of this algorithm, which was originally
described by Clayton in [3].

We have written three macros that differ only with regards
to the way in which person-time is aggregated over indi-
viduals. In the simplest macro (%sumpyrs), we write each
contribution to a data set and then aggregate all contribu-
tions. An alternative (%arrpyrs) is for each non-empty
combination of the levels of the already stratified varia-
bles to aggregate contributions for each combination of
levels of unity-rate time factors in a multidimensional
array (the PY array), with dimensions governed by the
product of cut points, write the contents of non-empty
array cells to a data set, and re-initialise these cells. This
technique requires that the input data set be sorted by all
the already stratified variables and that the data be han-
dled in chunks containing all the observations with the
same values of these variables. This is called by-processing
and is immediately available in SAS and is essential in
order to keep the size of the PY array manageable. In data
sets with many zero-rate time factors and many detailed
time axes, one runs the risk of examining a large sparse PY
array very frequently. To combat this problem, we wrote
an extension (%fstpyrs) to %arrpyrs where we keep track
of all cells visited for the present combination of levels of
already stratified variables in a second multidimensional
array (the pointer array), and only read and re-initialise
the relevant cells when it comes time to write to the out-
put data set.

The algorithms for aggregating person-time and events
implemented in %fstpyrs and %arrpyrs improve on ideas
presented by Wood et al [9]. Using by-processing, we can
create very detailed data sets without exhausting working
memory during event-time table construction.

http://www.epi-perspectives.com/content/5/1/7

Performance and limitations

The merits of the three macros presented above and two
widely used alternative macros were assessed on simu-
lated data sets. The two external macros were the classic
SAS realisation of the Macaluso B method described in
[10] and the lexis macro [29]. The latter is similar to the
stsplit function in STATA and lexis.R in R [14,30,31]. The
Macaluso B macro requires that the cut points on each
time axis be equidistant. The lexis macro offers full flexi-
bility in choosing cut points, but can only stratify data one
time axis at a time. Both methods require an aggregating
step, realised with SAS proc summary as in the sumpyrs
macro [28].

Although not strictly necessary, %sumpyrs, %lexis and
Macaluso B almost always gain from using by-processing
(to avoid excessive disk I/O), so we employed by-process-
ing throughout. Thus, observed differences in total run
time are due only to differences in macro stratification
efficiency and to random variation. The sumpyrs macro
was consistently faster than Macaluso B, illustrating the
efficiency of our program for stratification of follow-up
time (common to %sumpyrts, %fstpyrs, %arrpyrs). Strati-
fying person-time using %]exis typically took 2 to 3 times
longer than the same procedure using %sumpyrs, as the
lexis macro's reading and writing of ever larger data sets
consumed a great deal of time.

The fstpyrs macro was consistently faster (2 to 3 times
faster) than %sumpyrs. In the simplest possible situa-
tions, with very small PY-arrays, %arrpyrs was slightly
faster than %fstpyrs, but in such situations, time con-
sumption was modest anyway. When the average PY array
became sparse and was evaluated frequently, time con-
sumption for %arrpyrs became excessive (up to 100 times
slower than %fstpyrs in our simulations).

To get an idea of the potential gains to be had from further
improvements in stratification efficiency, we disabled out-
put from the stratifying data step in %sumpyrs and com-
pared the run time for the stratifying data step with the
total run time for %fstpyrs. Between 14% and 38% of the
run time was spent on stratification, with run times pro-
portionally longest during the simplest scenarios; thus,
when the fraction of computer run time spent on stratifi-
cation is substantial, overall run time is likely to be short
(i.e. the entire task is performed quickly). Consequently,
algorithms requiring e.g. common interval lengths for all
time axes in order to enable faster stratification [10,32]
seem, therefore, to be of little practical value given current
computer processing speeds.

Future developments
In the current implementation of the fstpyrs macro, the
pointer array takes up more space than the PY array when-

Page 14 of 16

(page number not for citation purposes)

Epidemiologic Perspectives & Innovations 2008, 5:7

ever there are more than two time axes, to permit inclu-
sion of every possible combination of the levels of
stratified unity-rate time factors [8]. However, usually
only a tiny fraction of this space is needed. It requires only
a few lines of code to modify the macro to cap the size of
the pointer-array with respect to the number of observa-
tions. Sensible choices for this cap should guarantee that
the pointer-array is small while rarely if ever resulting in a
situation in which the output data set is not as small as
possible, what statisticians call minimally sufficient.

In extraordinary situations when we have to use
%sumpyrs for lack of sufficient working memory (RAM)
and must work on a large input data set, a prohibitively
large intermediate data set (the stratified data set before
aggregation) can result. To avoid this, we have created a
variant of the sumpyrs macro which includes some prim-
itive automatic logic to chop up the sorted input data set
into smaller chunks for complete processing (stratifica-
tion and aggregation), the results of which are then con-
catenated to form the output.

These two examples emphasise the desirability of a gen-
eral fast algorithm for aggregation, the memory needs of
which do not grow in proportion to the number of cut
points per axis or the number of observations. The most
promising methods for achieving this involve implemen-
tation of nearly balanced binary trees [33] (Jacob
Simonsen - personal communication). However, such
methods may sacrifice the guaranteed minimally suffi-
cient event-time table in order to stay within working
memory during event-time table construction, and may
also require the use of facilities external to SAS.

The list of future refinements we may want to undertake is
relatively short:

1) Create the necessary programming logic to make auto-
mated intelligent choices between the various algorithms
for aggregation based on programming environment
characteristics and the data files being processed.

2) Minimise potential side effects such as the possibility of
overwriting variables intended to be in the output data
set.

3) Force the macros to recognise different time scales with
a common origin and combine them into a single scale
during calculations.

Macro implementation has been aided by features availa-
ble in the SAS language such as by-processing, multidi-
mensional arrays and a rich macro language. The use of
the SAS programming language ensures that these and
other macros are immediately available to many potential

http://www.epi-perspectives.com/content/5/1/7

users on almost any computing platform. On the other
hand, the algorithms may not be that easy to implement
in other languages. Nevertheless, it should be possible to
use large parts of the methodology presented here even
without the specific macros. We would be interested to
hear from people interested in and capable of adapting
parts of our macros for other languages, as we do not plan
to do this ourselves.

Acknowledgements

This study was supported by the Danish Medical Research Council. The
author wishes to thank Bo V. Pedersen, Henrik Ravn, Bendix Carstensen
and Heather Boyd for influential comments, Jan Wohlfahrt for immense
inspiration regarding the handling of zero-rate time factors and Jacob
Simonsen for friendly competition and input on the aggregation step of the
macro. The author wishes to thank the referees for forcing him to broaden
the scope of the paper and the macros and for many suggestions regarding
presentation.

References

I. Preston DL: Poisson regression in epidemiology. In Encyclopedia
of Biostatistics Volume 6. 2nd edition. Edited by: Armitage P, Colton T.
Chichester: John Wiley & Sons; 2005:4124-4127.

2. Dickman PWV, Sloggett A, Hills M, Hakulinen T: Regression models
for relative survival. Statist Med 2004, 23:51-64.

3. Breslow NE, Day NE: Statistical methods in Cancer Research, The Design
and Analysis of Cohort Studies Volume II. IARC scientific publication no.
82. Lyon: International Agency for Research on cancer; 1986.

4. Carstensen B: Demography and epidemiology: Practical use of
the Lexis diagram in the computer age or "Who needs the
Cox model anyway?". In Research report University of Copenha-
gen, Department of Biostatistics; 2006.

5. Business intelligence and analytics software — SAS
www.sas.com]

6. Preston DL, Lubin |, Pierce D, McConney ME: Epicure, Users' Guide
Seattle: Hirosoft International; 1993.

7. Marsh GM, Youk AO, Stone RA, Sefcik S, Alcorn C: OCMAP-
PLUS: a program for the comprehensive analysis of occupa-
tional cohort data. | Occup Environ Med 1998, 40(4):351-362.

8. Sourceforge.net: Pyrsstep [http://sourceforge.net/projects/

pyrsstep]
9. Wood J, Richardson D, Wing S: A simple program to create

exact person-time data in cohort analyses. Int | Epidemiol 1997,
26:395-399.

10. Macaluso M: Exact stratification of person-years. Epidemiology
1992, 3:441-448.

Il. Lunn M, McNeil D: Applying Cox regression to competing
risks. Biometrics 1995, 51:524-532.

12. Nielsen TR, Rostgaard K, Nielsen NM, Koch-Henriksen N, Haarh S,
Sorensen PS, Hjalgrim H: Multiple sclerosis after infectious
mononucleosis. Arch Neurol 2007, 64:72-75.

13. Shneiderman B: Designing the user interface. Strategies for effective
human-computer interaction 2nd edition. Reading, MA: Addison-Wes-
ley; 1992.

14. Stata statistical
www.stata.com]

15. Data Analysis Products Division, Mathsoft: S-PLUS 2000 Guide to Sta-
tistics, Seattle, WA 1999, 2:.

16. Pearce N, Checkoway H: A simple computer program for gen-
erating person-time data in cohort studies involving time-
related factors. Am | Epidemiol 1987, 125:1085-1091.

17. Cox DR, Oakes D: Analysis of survival data London: Chapman & Hall;
1984.

18. Hijalgrim H, Askling), Rostgaard K, Hamilton-Dutoit S, Frisch M,
Zhang J-S, Madsen M, Rosdahl N, Konradsen HB, Storm HH, Melbye
M: Characteristics of Hodgkin's lymphoma after infectious
mononucleosis. N Engl | Med 2003, 349:1324-1332.

19. Efron B: The efficiency of Cox's likelihood function for cen-
sored data. Journal of the American Statistical Society 1977, 72:27-36.

[htp://

software for professionals [htep://

Page 15 of 16

(page number not for citation purposes)

http://www.sas.com
http://www.sas.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9571527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9571527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9571527
http://sourceforge.net/projects/pyrsstep
http://sourceforge.net/projects/pyrsstep
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9169176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9169176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1391137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7662841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7662841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17210811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17210811
http://www.stata.com
http://www.stata.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3578247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3578247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3578247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14523140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14523140

Epidemiologic Perspectives & Innovations 2008, 5:7

20.
21.

22.
23.
24.

25.
26.

27.

28.

29.

30.

31
32.

33.

Oakes D: The asymptotic information in censored survival
data. Biometrika 1977, 64:441-448.

Edgren G, Hjalgrim H, Reilly M, Tran TN, Rostgaard K, Shanwell A,
Titlestad K, Adami J, Wikman A, Jersild C, Gridley G, Wideroff L,
Nyrén O, Melbye M: Risk of cancer after blood transfusion from
donors with subclinical cancer: a retrospective cohort study.
Lancet 2007, 369:1724-1730.

Frome EL: The analysis of rates using Poisson regression mod-
els. Biometrics 1983, 39:665-674.

White H: Maximum likelihood estimation of misspecified
models. Econometrica 1982, 50:1-25.

Lin DY, Wei LJ: The robust inference for the Cox proportional
hazards model. Journal of the American Statistical Society 1989,
84:1074-1078.

Fahrmeir L: Maximum likelihood estimation in misspecified
generalized linear models. Statistics 1990, 21:487-502.

Dean CB, Eaves DM, Martinez CJ: A comment on the use of
empirical covariance matrices in the analysis of count data.
Journal of Statistical Planning and Inference 1995, 48:197-205.
Spiegelman D, Hertzmark E: Easy SAS calculations for Risk and
Prevalence Ratios and Differences. Am | Epidemiol 2005,
162:199-200.

Documentation for SAS products and solutions [http://sup
port.sas.com/documentation/onlinedoc/index.html]

Index of/~bxc/Lexis [http://staff.pubhealth.ku.dk/~bxc/Lexis]
Weesie J: ssal l: Survival analysis with time-varying covari-
ates. Stata Technical Bulletin 41:25-43 [http://www.stata.com/prod
ucts/stb/journals/stb41.pdf].

The R project for statistical computing
project.org]

Sun J, Shibata E, Kamijami M, Toida M, Takeuch Y: An efficient SAS
program for exact stratification of person-years. Comput Biol
Med 1997, 27:49-53.

Musser DR, Derge GJ, Saini A: STL tutorial and reference guide, second
edition: C++ programming with the Standard Template Library Boston,
MA: Addison-Wesley; 2001.

[http://www.r-

http://www.epi-perspectives.com/content/5/1/7

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 16 of 16

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6652201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6652201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987728
http://support.sas.com/documentation/onlinedoc/index.html
http://support.sas.com/documentation/onlinedoc/index.html
http://staff.pubhealth.ku.dk/~bxc/Lexis
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.r-project.org
http://www.r-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9055045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9055045
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction
	Tutorial
	Conclusion

	Introduction
	Tutorial on creation of event-time tables
	Single outcome follow-up study: Pre-processing
	Single outcome follow-up study: Stratification and aggregation
	Single outcome follow-up study: Post-processing
	Single outcome follow-up study: Analysis
	Standardised incidence ratios for multiple outcomes: Pre- processing
	Standardised incidence ratios for multiple outcomes: Stratification and aggregation
	Standardised incidence ratios for multiple outcomes: Post- processing
	Standardised incidence ratios for multiple outcomes: Analysis
	Competing risks follow-up study
	Multiple outcomes follow-up study
	Why aggregate the event-time table?
	Types of time-varying factors
	Handling zero-rate and bit-rate time factors with the macro
	Output for Cox regression
	Timing problems

	Considerations in the choice of survival analysis model
	Conclusion
	Competing interests
	Appendix
	Algorithms
	Performance and limitations
	Future developments

	Acknowledgements
	References

