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Abstract

Objectives: To introduce a new, patient-oriented predictive index as a measure of gain in

certainty.

Study design: Algebraic equations.

Results: A new measure is suggested based on error rates in a patient population. The new
Predictive Summary Index (PSI) reflects the true total gain in certainty obtained by performing a
diagnostic test based on knowledge of disease prevalence, i.e., the overall additional certainty. We
show that the overall gain in certainty can be expressed in the form of the following expression:
PSI = PPV+NPV-I. PSl is a more comprehensive measure than the post-test probability or the
Youden Index (J). The reciprocal of | is interpreted as the number of persons with a given disease
who need to be examined in order to detect correctly one person with the disease. The reciprocal
of PSl is suggested as the number of persons who need to be examined in order to correctly predict
a diagnosis of the disease.

Conclusion: PSI provides more information than | and the predictive values, making it more

appropriate in a clinical setting.

Background

The main justification for performing a diagnostic test is
to gain new information [1-3], beyond the existing prob-
ability (the prevalence) obtained from a positive test, i.e.,
prevalence minus the positive predictive value (PPV) and
from a negative test, i.e., (1-prevalence) minus the nega-
tive predictive value (NPV). We introduce a predictive
summary index (PSI), a new measure that summarizes the
total gain in certainty, i.e., the overall additional certainty,
expressed as PSI = PPV+NPV-1. We show that the recipro-
cal of PSI can be interpreted as the number of persons
needed to be examined in order to correctly predict a diag-

nosis of the disease (NNP). We compare the PSI with a
less informative summary measure of a test in a limited
study population, the Youden Index (J), proposed by
Youden [1] as a measure of the goodness of a diagnostic
test.

The terminology of diagnostic test characteristics [4-29]
Performance assessment of a dichotomous diagnostic test
is usually based on assessing test performances in two dif-
ferent populations.
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The first one is a selected study population of persons with
and without a disease, in which both the diagnostic test
and the definitive test (the gold standard) are evaluated,
and for which sensitivity and specificity are calculated
using a "sample truth table" [6] (Table 1). The second one
is the general patient population to which the diagnostic
test is applied. The experience of this population is sum-
marized in a second 2 x 2 table (Table 2), which samples
the data according to test status (positive or negative, i.e.,
pathological or normal result). It is the data in Table 2 that
are of interest to the patient and the physician. However,
it is often difficult to obtain the information needed to
construct Table 2 because it is unfeasible or unethical to
perform both the diagnostic tests and an additional defin-
itive test in the general population to determine the true
diagnosis according to the gold standard. Therefore, the
positive predictive value (PPV) and the negative predictive
value (NPV) are calculated from Table 1 using the Bayes'
theorem.

I. Definitions in the study population (Table 1) [4-29]

Sensitivity and specificity, and the likelihood ratio are fre-
quently used measures (Table 1). False positive and false
negative rates are often defined with reference to the study
population. When diseased and non-diseased subjects are
sampled, the false positive rate among persons without
the disease is often defined as the o error (hence, specificity
=1 - ) and the false negative rate among persons with the
disease is often defined as the B error (hence, sensitivity =

1-P).

Table I: Two-by-two table for study results

Gold Standard

S+ S-

Clinical Test T+ a = True Positive b = False Positive
T- c = False Negative d = True Negative
Total atc b+d

1.1 sensitivity = P(T+|S+) =
a+c

d
1.2 specificity = P(T - |S-) = ——

b+d
R ) sensitivity
1.3 Positive Likelihood Ratio = PLR = —————
1 - specificity
o ) 1 — sensitivity
|.4 Negative Likelihood Ratio = NLR = ———
specificity

Error terms for the study population:

o = false positive rate = fpr = ———

b+d

B = false negative rate = fnr =
a+c
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Table 2: Two-by-two table for a target population

Gold Standard

S+ S- Total

B = False Positive ~ A+B
D = True Negative C+D

Clinical Test T+ A = True Positive
T- C = False Negative

2.1 PPV = P(S+|T+) = i
A+ B

D
22 NPV = P(S-|T-) = ———
C+D

PPV
23PPR= ———— [29]
1- NPV

1-PPV
24NPR= ———— [29]
NPV

Error terms for the target population:

o, = False Positive Rate = FPR = ———
A+B

B, = False Negative Rate = FNR =
g C+D

2. Definitions in the target (patient) population (Table 2)
[4-29]

The measure of interest for physicians and patients alike is
usually the positive predictive value (PPV) and the nega-
tive predictive value (NPV), (Table 2). When the preva-
lence P is known, the PPV can be derived from sensitivity
and specificity.

In a previous publication [29] we proposed two new ratio
measures in the patient population: the Positive Predic-
tive Ration (PPR), which is analogous to the PLR, and the
Negative Predictive Ration (NPR), which is analogous to
the NLR. We do not discuss these ratio measures in the
present article, and are mentioned only for better under-
standing the new difference measure proposed here.

Following Fleiss [27], Reid et al. [28], Knottnerus [22],
and Riffenburgh [6], we use uppercase notations to define
error rates in the patient (target) population (Table 2), in
addition to the commonly used fnr and fpr defined above.
Note that the interpretation of alpha and beta errors in the
target population (Table 2) is different from that in the
study population (Table 1); we therefore use the subscript
p for errors in the target (patient) population.

3. The Youden index

In 1950, Youden [1] proposed the Youden Index as a
measure of the goodness of a diagnostic test, using alpha
and beta errors:

3. 7=1-(0.+p)
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If the test has no diagnostic value, the sensitivity = 1 - B
equals the fnr=o, ie,J=0

(i.e., equal probability for disease among people with
positive and negative test results).

If the test is always correct, all errors equal 0 and ] = 1.
Negative values of J (between -1 and 0) occur if the test is
misleading, that is, if test results are negatively associated
with the true diagnosis. Thus, as Pepe noted [26], J is a
one-dimensional summary of test accuracy in the study
population when the human and monetary costs associ-
ated with false positive errors in persons without the dis-
ease are similar in magnitude to those associated with
false negative errors in persons with the disease [[26],
p.80].

3.1 Interpretation of the Youden index (]) in the study population
Another way of expressing this statistic in the study popu-
lation is by means of sensitivity and specificity:

311J=1-(a+B)=(1-0a)+ (1-B)- 1 = sensitivity + spe-
cificity - 1

Assuming that sensitivity and specificity are equally
important in determining the expected gain, the above
equation implies that when sensitivity+specificity = 1, the
test provides no overall information. Thus, if the test has
no diagnostic value, e.g., the sensitivity and specificity are
both 0.5, ] = 0. If the test is always correct, the sensitivity
and specificity total 2, and J = 1.

3.2 Interpretation of the Youden index (]) as an average total net
gain in certainty in the study population

As originally proposed by Youden [1], the index can be
derived in another way: the net gain for persons with the
disease can be defined as the difference between the per-
centage of persons diagnosed correctly (i.e., the sensitiv-
ity) and the fnr.

a c a—c¢
321g, =—————=1tpr—far=——
at+c a+c a+c

Similarly, the net gain for persons without the disease can
be defined as the difference between the percentage of

persons diagnosed correctly without a disease (i.e., the
specificity) and the fpr.

d b _d-b

3.22¢ =tnr— = - =
8 = T = Ty T dth

Assuming that the value gain in certainty for these two
populations (persons with and without the disease) is
similar, and that false positives are as undesirable as false
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negatives, the unweighted average of the two measures is
J (see appendix A):

3238: %8 _Ljazc d-b_,
2 2a+c d+b

3.3 Analogies to a cohort study
J can also be interpreted as the difference between the true
and false positive rates.

a b

b+d

3.31] = (1-B)— o = sensitivity — fpr =
a+c

Thus, ] reflects the excess of the proportion of a positive
result among patients with vs. patients without the disease
[24-26].

This interpretation of J is analogous to a commonly used
measure in cohort studies, the rate (risk) difference (RD).
Counter-intuitively, the analogy is to a cohort study rather
than to a case control study, although in a study popula-
tion the compared study groups are persons with and
without the disease because the "causative" variable (i.e.,
the "exposure") is the fact that a person does or does not
have the disease. The diagnostic test results (positive or
negative) are the "outcome" of the disease.

J can also be written as:

3-32]=(1—(x)—[3=5pecificity—fnr:i— ¢
b+d

a+c

Thus, J also reflects the excess in the proportion of a nega-
tive result among patients without vs. patients with the dis-
ease [25].

This interpretation of J is analogous to a rate difference of
having no disease, when the focus of the investigation is
the absence of a disease. Alternatively, it can be analogous
to a follow-up study that defines better health as the out-
come. In other words, it is analogous to the rate difference
of a protective agent, such as vaccination, when better
health and disease are compared as outcomes.

1
A further analogy of 7 to the well-known measure of the

1 ..
"number needed to treat" (NNT) = D is in order. Thus,

1 . .
7 may be interpreted as the number of patients needed to

be examined in order to correctly detect (NND, Table 3)
one person with the disease in a study population (Table
1) of persons with and without the known disease.
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Table 3: Analyses of data in an example by Sackett et al [8 (Table 4-10, pp. 95-98)].

Patient A: High prior suspicion of

coronary disease

Patient B: Low prior suspicion of
coronary disease

Patient C: Intermediate prior
suspicion of coronary disease

Prevalence 90%

A 540

B 9

C 360

D 9l

PPV 540/549 = 98.36%
NPV 91/451 =20.18%
FPR 9/549 = 1.64%
FNR 360/451 = 79.82%
PLR 6.67

J = sensitivity+specificity- | 51.41%
NND = 1/J 1.95

PSI =¥ = PPV+NPV-| = 18.54%

= [PPV-Prevalence]+ [NPV-(I-Prevalence)]

NNP = |/PSI = I/¥Y 5.4

5% 50%
30 300
86 45
20 200

864 455

30/116 =25.86%

864/884 = 97.74%
86/116 =74.14%
20/884 = 2.26%

300/345 = 87%
455/655 = 69.47%
45/345 = 13.04%
200/655 = 30.53

6.67 6.67
51.41% 51.41%
1.95 1.95
23.60% 56.47%
42 1.8

The use of exercise ECG with three types of patients with prior coronary disease probability of 5%, 90% and 50%, using angiogram as a gold

standard.

The commonly used PLR is a ratio measure, analogous to
the risk ratio (RR) in a follow-up study. Thus, ] and PLR
describe a diagnostic test in the study population of Table
1 only, in two different dimensions.

4. The new measure in the target population: Predictive
Summary Index (PSI, #)

Because the Youden Index (J) is based on the study popu-
lation (Table 1) [25,26], it does not convey information
about the specific clinical setting in which the diagnostic
test is being applied. Patients and physicians are more
interested in a similar Predictive Summary Index (PSI, V)
in the target population (Table 2). Because the interpreta-
tion of alpha and beta errors in the two populations is dif-
ferent, J and PSI have different underlying interpretations.

PSI can be derived in the target (patient) population as a
measure of the goodness of the predictability in a diagnos-
tic test, using alpha and beta errors in the target popula-
tion:

4.PSI=PPV + NPV -1=1-(0,+B,)

If the test has no predictive value, PPV equals FNR, i.e.,
there is an equal probability for disease among people
with positive and negative test results (Table 2). Hence:

1-0,=B,
thus,

PSI=0

If the test is always correct, all errors equal 0 and PSI = 1.
Negative values of PSI (between -1 and 0) occur if the test
is misleading, i.e., occurrence of disease is negatively asso-
ciated with tests results.

4.1 Interpretation of PSl in the study population as a true (total) gain
in certainty

Another way of expressing this statistic in the study popu-
lation is by PPV and NPV:

4.11 predictive index =PI = 1 - (OLp + Bp) =(1- (xp) +(1-
Bp) -1=PPV+ NPV -1

ie.,

D
+

4111 PSI = —
A+B C+D

1

This can be expressed using the data in the study popula-
tion (Table 1) by means of the Bayes' theorem.

sensitivity * P

. specificity * (1 - P)
sensitivity * P+ (1— specificity) *(1—P)

4.12PSI = — -1
specificity *(1—P) + (1— sensitivity)* P

PSI in the target population is a generalization of the
measure of gain in certainty from a diagnostic test, as pro-
posed by Connell and Koepsell [2].

Physicians can guess the probability of a disease without
performing a diagnostic test based on prevalence (the
prior probability of a disease). A true gain in the certainty
that a disease is present occurs when the posterior proba-
bility (the PPV) is greater than the prior probability (the
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prevalence). A true gain in the certainty that there is no
disease occurs when the posterior probability of no dis-
ease (the NPV) is greater than the prior probability of no
disease (1-prevalence).

The total net gain in certainty is a summation of these
gains. Algebraically, it is the PSI.

4.13 Total net gain in certainty =
= [PPV - Prevalence] + [NPV - (1 - Prevalence)] =
= PPV+NPV-1 = predictive index = PSI

Equation 4.13 is valid when the human and monetary
costs associated with the false positive errors of a diagnos-
tic test are similar in magnitude to those associated with
false negative errors. PSI in the patient population can
thus be interpreted analogously to the Zhou et al. [25] and
Pepe [26] interpretations of ] in the study population, as
a one-dimensional summary of "test predictability" [[26],
p-80].

4.2 Interpretation of PSl in the target population as the average net
gain in certainty for persons with a positive or negative test result
PSI can be derived in another way as follows: the net gain
in certainty for persons in the target population with a
positive test result is the difference between the percentage
of persons predicted correctly to have the disease the PPV)
and the FPR.

_é__ B =HW_Hm=é;E
A+B A+B A+B

421G, =

Similarly, the net gain for persons with a negative test
result is the difference between the percentage of persons
predicted correctly to be without the disease (the NPV)
and the FNR.

D C _Npv_pr=P=C

422 G_ = -
C+D C+D C+D

Assuming that the value gain in certainty for these two
populations (persons with positive and negative test
results) is similar, and that false positives (FPR) are as
undesirable as false negatives (FNR), the unweighted aver-
age of the two gains is PSI (Appendix B):

G, +G_ 1 [A—B +D—C]

2 2°'A+B D+C

4.23

4.3 Analogies to a case control study

The PSI can be interpreted as the difference between the
correct prediction of a disease by the test and a false nega-
tive result of the test in the target population.

http://www.epi-perspectives.com/content/3/1/11

3 C
A+B C+D

431PSI=(1-0,)—B, = PPV —FNR =

Thus, PSI reflects the excess in the proportion of the dis-
ease when the test yields a positive result vs. the propor-
tion of the disease when the test is negative, similar to the
Zhou et al. [25] interpretation of ] in the study popula-
tion.

This interpretation of PSI is analogous to the exposure rate
difference, an uncommon measure of no interest in case
control studies. Counter-intuitively, the analogy is to a
case control study rather than to a follow-up study,
although the compared study groups are persons with
positive vs. negative test results. As mentioned above, the
"causative" variable (the "exposure") is the fact that a per-
son does or does not have the disease. The diagnostic test
results (positive or negative) are the "outcome" of the dis-
ease.

Although in case control studies there is no interest in the
exposure rate difference, where we are interested in the
association of exposure with a resulting disease, the PSI,
analogous to the exposure rate difference, is of interest in
clinical epidemiology in the context of the data in Table 2,
i.e., in the target population.

. . 1
We suggest using a new statistic, NNP = 7SI’ analogously

to NND to estimate the number of patients needed to be
examined in the patient population (Table 2) in order to
correctly identify (predict) the positive diagnosis of one
person. For example, this can be the number of people
who would have to undergo exercise ECG to correctly
identify one person who would eventually be diagnosed
by angiography as having coronary artery disease. This
measure may be abbreviated as the "number needed to
predict," or NNP.

Similarly, one can also interpret PSI as:

D B

432P$:(L4%)—QPZAWV_FHL:C+[)_A+B

Thus, PSI reflects the excess in the proportion of no dis-
ease when the test yields a negative result vs. no disease
when the test is positive, similar to the Zhou et al. [24]
interpretation of J.

This interpretation of PSI is analogous to the exposure rate
difference when the lack of exposure is the focus of the
investigation, and it is compared with exposure to the
causative agent.
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NNP measures also the number of patients needed to be
examined in the patient population in order to correctly
identify (predict) the negative diagnosis of one person.

5. Example using published data

Consider the example provided by Sackett et al. [[8], p.
95-98] on the importance of prevalence for the evalua-
tion by exercise ECG of three types of patients with prior
coronary disease probability of 5%, 90%, and 50%, using
angiogram as a gold standard (Table 3). Originally, the
example was designed to demonstrate the importance of
prevalence in determining the PPV and NPV of a diagnos-
tic test (exercise ECG). The sensitivity of the ECG was
60.35% and the specificity 91.06%. Thus the Youden
Index was J = 51.41% for all three types of patients.

As indicated by Sackett et al. [8], patient C, with a 50%
prior probability of the disease, can benefit more from the
test than patients A and B. But both the PLR and J statistics
(in the study population) are identical for the three types
of patients and do not convey this information. However,
PSI statistics provide the information relevant to patients
and physicians, in this case a PSI of 18.54%, 23.6%, and
56.47% for patient populations with a prevalence of 90%,
5%, and 50%. PSI is a comprehensive measure that con-
veys information about prior probabilities of a disease
(the prevalence) together with the information about the
posterior probability, after performing the diagnostic test,
the PPV, as well as the probability of no disease (1-preva-
lence), and the NPV.

. 1 . . .
While NND = 7 remains constant irrespective of preva-

1
lence, NNP = sl is dependent on prevalence and yields

values of 5.4, 4.2, and 1.8 for patient populations with a
prevalence of 90%, 5%, and 50%. The range of NNP dem-
onstrates that the exercise test is most efficient when the
prevalence is 50%, as Sackett et al. [8] claimed. Only two
patients would be needed to show a valuable information
gain from an exercise test for predicting coronary heart
disease when the prevalence is 50%, compared with more
than 5 patients when the prevalence is 90%.

Discussion

Most of the classic epidemiology textbooks do not discuss
the Youden Index, probably because its utility is limited,
as shown in the above example: it remains unchanged in
populations with different prevalence of the disease. Sim-
ilarly, only few textbooks discuss measures of gain in cer-
tainty despite the fact that the purpose of a diagnostic test
is to reach a better diagnosis by a gain in certainty. We sug-
gest a simple and informative summary measure of the

http://www.epi-perspectives.com/content/3/1/11

total gain in certainty, the PSI, which is readily calculable
from 2 x 2 tables that describe the performance of a diag-
nostic test in the patient (target) population. We suggest
to use the capital Greek letter PSI (W) for this index.

PSI is of interest to patients: it describes how much more
likely the patient is to be correctly diagnosed with a dis-
ease after a positive test, and how much more likely the
patient is not to be incorrectly diagnosed with a disease
after a negative test. This information may be critical. PSI
can serve as an indicator for the possible use of the results
of a specific test, and makes possible comparisons
between tests within the context of prior probabilities: the
higher the PSI, the more informative the test is for patients
and physicians.

J is a descriptor of a diagnostic test among theoretical
groups of persons with and without a disease. PSI is a
descriptor of test performance for persons who test posi-
tive or negative. Thus, PSI reflects the total net gain in cer-
tainty resulting from a diagnostic test in clinical
conditions, which is of interest to physicians and patients
alike. This information is not available through J or any of
the diagnostic test characteristics, including sensitivity,
specificity (and thereby the likelihood ratios), and PPV.

PSI is similar in form to J but not identical with it. J is
depends entirely on sensitivity and specificity. By contrast,
PSI is partially dependent on those parameters and on the
prevalence. Although Connell and Koepsell [2] advocated
the use of a measure similar to PSI in the patient popula-
tion, they explored only a special case in which the study
population and the target population are identical and the
prevalence is known from the study population.

a+c

prevalence = ———
a+b+c+d

This is a specific condition that seldom occurs. PSI is not
limited to this specific situation.

Increasing diagnostic power through new technologies
usually serves to increase the sensitivity of diagnostic pro-
cedures, with a potential for higher J. But new technolo-
gies can also decrease specificity and create false positive
findings, resulting in anxiety and unnecessary costs [30-
34]. These are not measurable by J in a limited study pop-
ulation. Therefore, PSI should be evaluated for each new
diagnostic test to estimate its diagnostic accuracy in the
patient population.

When physicians have data on the patient population and
can construct the appropriate Table 2 for the clinical (tar-
get) population, a clinic-specific PSI can be calculated
directly from the patient population. In a clinical setting,
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the calculation of PSI does not depend on knowing the
prevalence, a statistic that is often not available for specific
patient populations. Following up on patients with posi-
tive or negative tests will yield directly the PPV and NPV
without the need for sensitivity, specificity, or Bayes' the-
orem. PSI calculations are readily available from the PPV
and NPV. For example, sonographers can follow up on
fetuses who test positive or negative for malformations
and determine the PPV and NPV in their prenatal clinic
[29]. Their PSI would serve to indicate the net gain in cer-
tainty for their patients (equation 4.13) and the average
net gain in information for patients who test positive or
negative (4.23). When sensitivity, specificity, and external
knowledge of the prevalence are available, Bayes' theorem
can be used to calculate the PPV, the NPV, and thereby the
PSI.

Moons and Harrell have recently criticized the use of sen-
sitivity or specificity, maintaining that "...sensitivity and
specificity are not proper parameters for characterizing
diagnostic accuracy research... these parameters are of lim-
ited relevance to practice, and their estimation should not
necessarily be pursued in diagnostic research" [33]. Note
that the diagnostic "gold standard" is itself imperfect [31-
33]. Our approach emphasizes the need to evaluate test
characteristics in the patient population.

Neither the PLR nor J are calculable in the patient (target)
population, and they do not convey any additional infor-
mation beyond sensitivity and specificity. In a previous
publication we suggested new ratio measures in the
patient population [29]. In this manuscript we recom-
mend the use of a new measure, PSI, as a difference meas-
ure that measures the overall clinical utility of a test.

The present paper suggests a similarity between J and the
rate difference in a cohort study. Similarly, we suggest an
analogy between PSI and the exposure rate difference in
a case control study. These analogies have seldom been
discussed in the epidemiological literature despite the
obvious implications for teaching and understanding the
different uses of the 2 x 2 table in etiological and clinical
epidemiology.

Thus, analogously to calculations of NNT from the rate
difference (RD) in follow-up studies, the reciprocal of J,

. 1 . .
i.e, —, can be interpreted as the number of patients

needed to be examined in order to correctly detect (NND)
one person with the disease [34] in a study population
(Table 1) of persons with and without the known disease.
NND can be helpful whenever the sensitivity and specifi-
city, and thus J or PLR are used. But NND is insensitive to
variation in prevalence, as shown in the example in Table

http://www.epi-perspectives.com/content/3/1/11

3: approximately two examinations are needed among
persons with and without a diagnosis of a disease to detect
correctly one person who has the disease, irrespective of
patient characteristics and the prevalence of the diseases.
Patients and physicians have little interest in a statistic
that is unaffected by patient characteristics. Thus, NND
should have limited clinical utility.

1
We suggest instead using NNP = sl to estimate the

number of patients needed to be examined in the patient
population (Table 2) in order to correctly predict the diag-
nosis of one person with a positive test result. This meas-
ure, the "number needed to predict," better describes the
use of a diagnostic test in patient populations with a dif-
ferent prevalence of the disease (Table 3), and is much
more meaningful for patients and physicians. Based on
Sackett's example [8] and the data in Table 3, we suggest
that NNP can be useful for cost assessment and policy
making for specific patients at a specific risk. For example,
exercise ECG could be used for patients at high risk for
coronary heart disease but not for patients at low risk.
Similarly, NNP estimates the number of patients who
need to be tested to identify, with a negative test result,
one patient who does not have the disease.

The interpretation of ] is based on the assumption that the
human and monetary costs associated with a false positive
and a false negative in the study population (Table 1) are
equal [1,25,26]. Similarly, the interpretation of PSI is
based on the assumption that the human and monetary
costs associated with a false positive and a false negative
in the target population (Table 2) are equal. These
assumptions are valid when missing the diagnosis of a dis-
ease is as important and undesirable as missing the diag-
nosis of the absence of a disease. If other assumptions (of
unequal importance) are more appropriate, a weighted
measure of PSI can be developed, similar to attempts to
study weighted J by Faraggi [35] and by Fluss, Faraggi and
Reisser [36].

J is one of the most important measures in receiver oper-
ating curve (ROC) analyses aimed at choosing the cutoff
point at which the sensitivity and false positive rates yield
the largest J. There is a vast literature on the use of J in
assessing the ROC [24,25,34] in continuous diagnostic
tests. Similarly, future studies should explore PSI for con-
tinuous diagnostic tests and weighted PSI. Teaching mate-
rials and software can be developed to assist physicians in
using PSI, similarly to what has been accomplished by
Schechter and Sheps [37] who introduced simple and
accessible approaches to calculating PPV.
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There are excellent computer programs available for com-
puting J, notably PEPI [38]. PEPI programs also calculate
the gain in certainty in the study population. Similar pro-
grams that calculate PSI could be developed with great
benefit.

Notations
P(T+) = probability of the diagnostic test being positive

P(T-) = probability of the diagnostic test being negative
P(S+) = probability of disease, i.e., prevalence

P(S-) = probability of no disease, i.e., 1-prevalence
Sensitivity = P(T+|S+)

Specificity = P(T-|S-)

PPV = positive predicted value = P(S+|T+)

NPV = negative predicted value = P(S-|T-)

fpr = study false positive rate = P(T+|S-) = 1-sensitivity
fnr = study false negative rate = P(T-|S+) = 1-specificity
PLR = positive likelihood ratio = sensitivity/(1-specificity)

NLR = negative likelihood ratio = (1-sensitivity)/specifi-
city

PPR = positive predictive ratio = PPV/(1-NPV)

NPR = negative predictive ratio = (1-PPV)/NPV

FPR = population false positive rate = P(S-|T+) = 1-PPV
FNR = population false negative rate = P(S+|T-) = 1-NPV

J = Youden Index = A summary index in the study popula-
tion = sensitivity+specificity-1

PSI = ¥ = Predictive Summary Index in the target popula-
tion = PPV+NPV-1

RD = rate difference (in a follow-up study)

NND = number needed to detect a disease = 1/]
NNP = number needed to predict a diagnosis = 1/¥
Appendix A

J is the total net gain in certainty when a test is applied to
the study population, and is also the average net gain in

http://www.epi-perspectives.com/content/3/1/11

certainty in the study population for persons with or with-
out a disease.

Assuming that the value gain in certainty for the two study
populations (persons with and without the disease) is
similar, and that the false positives, fpr, are as undesirable
as the false negatives, fnr, the unweighted average of the
two measures is J:

3238t _Ljazc, d-b,_,
2 2a+c d+b

Proof
Rearranging the algebraic terms:

l[a—c+d—b]_l[ad+ab—cd—cb+ad+dc—ab—cb]
2a+c d+b 2 (a+c)(b+d)
1 2ad-2ch ad —cb

T2@to)(b+d) (ato)(b+d)
Adding and subtracting 1:

ad —bc

B ad—bc+ab+ad+bc+cd_ _ 2ad+ab+cd_ _
(a+c)(b+4d)

+1-1= =
(a+c)(b+d) (a+c)(b+4)

2ad+ab+cd_1_ a(b+d)+d(a+c)_1_

(a+c)(b+4d) (a+c)(b+4d)
== :l_ . + ﬁ —1 = sensitivity + specificity —1=]

Appendix B

PSI is the total net gain in certainty when a test is applied
to the target population and is also the average net gain in
certainty for persons with a positive or negative test:

l[a—c+d—b]_l[ad+ab—cd—cb+ad+dc—ab—cb]
2a+c d+b 2 (a+c)(b+4d)
1 2ad-2cb ad—cb

T 2(aro)b+d) (@rob+d

Assuming that the value gain in certainty for the two target
populations (persons with a positive test and without a
positive test) is similar, and that the false positives (FPR)
are as undesirable as the false negatives (FNR), the
unweighted average of the two measures is PSI.

Proof
Rearranging the algebraic terms:
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1. A-B D-C

_ 1. AD+ AC-BD-BC+AD-AC+BD-BC

+
2'A+B D+C 2
1 2AD-2BC

1=3 (A+B)(C+D) |

AD-BC

T2(A+B)(C+D) (A+B)(C+D)

Adding and subtracting 1:

AD-BC 1 :AD—BC+AC+AD+BC+BD:
(A+B)(C+D) (A+B)(C+D)
2AD+AC+BD

(A+B)(C+D)

A(C+D)+D(A+B)_l_

(A+B)(C+D)
= A + D —1=PPV+ NPV -1=PSI
A+B C+D
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