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Abstract
Background: Power for assessing interactions during data analysis is often poor in epidemiologic
studies. This is because epidemiologic studies are frequently powered primarily to assess main
effects only. In light of this, some investigators raise the Type I error rate, thereby increasing
power, when testing interactions. However, this is a poor analysis strategy if the study is chronically
under-powered (e.g. in a small study) or already adequately powered (e.g. in a very large study). To
demonstrate this point, this study quantified the gain in power for testing interactions when the
Type I error rate is raised, for a variety of study sizes and types of interaction.

Methods: Power was computed for the Wald test for interaction, the likelihood ratio test for
interaction, and the Breslow-Day test for heterogeneity of the odds ratio. Ten types of interaction,
ranging from sub-additive through to super-multiplicative, were investigated in the simple scenario
of two binary risk factors. Case-control studies of various sizes were investigated (75 cases & 150
controls, 300 cases & 600 controls, and 1200 cases & 2400 controls).

Results: The strategy of raising the Type I error rate from 5% to 20% resulted in a useful power
gain (a gain of at least 10%, resulting in power of at least 70%) in only 7 of the 27 interaction type/
study size scenarios studied (26%). In the other 20 scenarios, power was either already adequate
(n = 8; 30%), or else so low that it was still weak (below 70%) even after raising the Type I error
rate to 20% (n = 12; 44%).

Conclusion: Relaxing the Type I error rate did not usefully improve the power for tests of
interaction in many of the scenarios studied. In many studies, the small power gains obtained by
raising the Type I error will be more than offset by the disadvantage of increased "false positives".
I recommend investigators should not routinely raise the Type I error rate when assessing tests of
interaction.

Background
Quantification of effect-measure modification (hereafter
called "modification") is an important aspect of epidemi-
ologic research [1]. During data analysis, assessment of
modification often involves testing the statistical signifi-
cance of one or more interactions terms in a regression

model, or using a test such as the Breslow-Day test for het-
erogeneity of the odds ratio [1-4].

However, power for assessing interaction during data
analysis is often poor in epidemiologic studies, which are
frequently designed primarily for the assessment of main
effects only (the term "main effect" refers to any variable
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not involved in an interaction). Researchers who are reluc-
tant to "miss" an important interaction due to low power
can elect to use a higher Type I error rate when assessing
interactions. A error rate of 20%, rather than the tradi-
tional 5%, has been suggested [4]. A higher Type I error
rate boosts the statistical power, however, the gain in
power comes at the cost of more Type I errors (spurious
false positive tests for interaction). Proponents of raising
the Type I error rate argue that it is preferable to include
additional spurious interactions in the analysis, rather
than mistakenly overlook a "true" interaction [4].

There are two main drawbacks to the strategy of increasing
the power of the interaction test by raising the Type I error
rate that are explored in this paper. The first problem
occurs if power is at an extremely low level when the Type
I error rate is 5% (e.g. if the study was very small), the
power gain obtained from increasing the Type I error rate
may not be large enough to boost power to an acceptable
level. In this situation, the power might be slightly
improved, but will still be very low, at the higher Type I
error rate. In this paper, I refer to this chronically under-
powered situation as the "low ground" scenario.

On the other hand, the second problem can occur if the
study power is already high enough to detect an interac-
tion of substantive importance. In this situation, there is
no real need to boost power, and the effect of raising the
Type I error rate is merely to dilute the pool of identified
interactions by including a higher proportion of interac-
tions that are of little substantive interest. I refer to this
already-adequately-powered situation as the "high
ground" scenario.

There is "middle ground" between the "low ground" and
"high ground" scenarios. In the "middle ground" sce-
nario, it makes sense to raise the Type I error rate when
assessing interactions, because this will usefully boost
power from a sub-standard level to a useful level.

The purpose of this study is to quantify the size of the
"middle ground". In other words, how often does raising
the Type I error rate for interaction tests result in a useful
gain in power? If epidemiologic studies are frequently in
the "middle ground", there may be a case for universally
recommending that the Type I error rate routinely be
raised when assessing interactions. On the other hand, if
few epidemiologic studies fall into the "middle ground",
then recommendations suggesting that Type I error rate be
raised [4] are ill-advised and should be discontinued.

Practical illustration of raising the Type I error rate
Assume an epidemiologist has conducted a study that
assessed multiple exposures and is analyzing the data
using a series of logistic regression models, some of which

contained interactions. S/he is reviewing computer output
that reports measures of effect (such as odds ratios) along
with their confidence intervals and p-values. Under a
"test-based paradigm", s/he will identify a main effect
with a p-value above 5% as less predictive of the outcome
than a main effect with a p-value below 5%. However,
some epidemiologists, attuned to the fact that power for
interactions is typically much lower than power for main
effects, might elect to raise the Type I error rate to 20%
when assessing interactions [4]. They would identify an
interaction term with a p-value above 20% (not 5%) as a
potential modifier of effect.

Of course, an extensive literature advises epidemiologists
to consider measures of effect, confidence intervals, stra-
tum-specific measures and apriori biological knowledge,
in addition to considering p-values, when determining
strength of association or assessing modification [1,5-8].
Furthermore, multiplicative models (such as logistic
regression) make it difficult to assess interactions on the
basis of departure from additivity of effects [1,9,10]. How-
ever, despite their limitations, p-values and multiplicative
models remain a staple of modern epidemiology.

Epidemiologists frequently report p-values from tests of
interaction, however, my anecdotal impression is that
most epidemiologists do not raise the Type I error rate in
the manner described above when testing for interactions.
To quantify the frequency of the practice of using tests of
interaction with a relaxed Type I error rate, I reviewed of
all papers published between November 2004 and Octo-
ber 2005 in the American Journal of Epidemiology that
included the word "interaction" in the title, abstract, or
text of the paper. A total of 94 substantive papers were
identified that presented some form of quantitative
assessment of effect-measure modification. Of these, six
papers used tests of interaction with a raised Type I error
rate [11-16]. Three papers used an error rate of 10% [11-
13] and three papers used an error rate of 20% [14-16].
The remaining 88 used either the standard 5% error rate
or else did not report any interaction p-values.

Methods
Overview
The outcome of interest in this study was the gain in
power obtained by raising the Type I error rate (see
Appendix for definition of Type I and Type II error).
Power was quantified at four Type I error rates: 5%, 10%,
15%, and 20%. The gain in power due to raising the Type
I error rate was studied for ten different hypothetical types
of interaction, ranging from sub-additive through to
super-multiplicative, across three study sizes. Three com-
monly used tests of interaction were examined: the Wald
test, the likelihood ratio test, and the Breslow-Day test.
These tests are described in detail in the Appendix.
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In the interests of simplicity, the study was focused on
case-control studies of two binary exposures. The two
binary exposures are referred to as exposure A and expo-
sure B. The standard regression analysis for this data
involves fitting a logistic model:

logit(D = 1) = β0 + β1A + β2B + β3AB (model 1)

where D is coded to 0 for controls and 1 for cases, A and
B are binary variables with the non-exposed coded to 0
and the exposed coded to 1, and AB is the product-term
interaction obtained by multiplying A by B.

Power for tests of interactions in case-control studies has
previously been examined in a study that focused on com-
paring additive and multiplicative models [3]. However,
the previous study did not address the question of how
much power is gained when the Type I error rate is raised
(i.e. it presented results at the 5% level only). In order to
preserve comparability with the previous work [3], I
elected to make many of the parameters examined in this
study (the interaction scenarios, the study sizes, the expo-
sure prevalences, and the case:control ratio) the same (or
similar) to those used by the previous author [3].

Types of interaction
This study examined ten different types of interaction,
ranging from joint effects that were less than additive
through to greater than multiplicative. These ten scenar-
ios, described in Figure 1, cover the gamut of interactions
typically encountered in epidemiology. Figure 1 shows
the 2 × 2 interaction tables for the ten hypothetical source
populations (not studies) [3].

Each interaction is characterized by the expected joint
effect under assumptions of perfect additivity, or multipli-
cativity, of effects. For example, for the sub-additive inter-
action (S1), the joint effect of double exposure has an
odds ratio of 6, which is less than the joint effect expected
under perfect additivity (3 + 6 - 1 = 8). For the first super-
multiplicative interaction (T1), the joint effect of double
exposure is 12, which is greater than expected under per-
fect multiplicativity (3 × 3 = 9). The exposures in the M1
interaction are perfectly multiplicative (3 × 2 = 6) and per-
fectly additive in the A1, A2, and A3 interactions. Interme-
diates I1 and I2 are greater than additive but less than
multiplicative.

Study size and exposure prevalence
I examined studies of three different sizes: 75 cases and
150 controls (small), 300 cases and 600 controls (large),
and 1200 cases and 2400 controls (very large). The
case:control ratio was fixed at 1:2.

The exposure prevalences examined was also fixed. The
exposure prevalence in the non-cases was set at 40% for A
and 40% for B, with 40% of the non-cases being exposed
to both A and B (doubly exposed), 20% being exposed to
A but not to B, 20% being exposed to B but not to A, and
20% unexposed to both A and B (doubly unexposed). The
doubly unexposed was the reference category in all analy-
ses. These exposure prevalences ensured adequate num-
bers of cases and controls in all strata [3].

Methods for studying power
This study used two methods for studying power: the
asymptotic power function and simulations. The asymp-
totic power function was used to examine the power of the
Wald test for the interaction in the logistic model (model
1). The term "asymptotic power" refers to the power
results obtained from a formula derived under the
assumption the study size is large (see Appendix).

In addition, simulations were used to confirm the asymp-
totic results, investigate the coverage of the 95% confi-
dence interval, and extend the results to the likelihood
ratio test for interaction and the Breslow-Day test for het-
erogeneity of the odds ratio. Simulation is a computer-
intensive method for empirically studying the properties
of a statistic by mimicking the process of conducting a
large number of studies. Ten hypothetical populations
were created – one for each of the ten types of interaction
studied (Figure 1). One thousand with-replacement sam-
ples were drawn from each population and the three tests
of interaction were computed for each sample. Each sam-
ple is, in essence, a simulated epidemiologic study. For
each of the ten types of interaction, I tabulated the propor-
tion of the 1,000 simulated samples where the p-value for

Population Odds Ratios for Ten Hypothetical Interaction Scenarios (based on Greenland, 1983)Figure 1
Population Odds Ratios for Ten Hypothetical Interaction 
Scenarios (based on Greenland, 1983).

B B B B

A 1* 6 A 1* 4 S1: Sub-additive 

3
-1.0986

A 3 6 

A1: Additive

3
-0.6932

A 3 6 

A 1* 10 A 1* 16 A2: Additive

3
-0.9163

A 3 12

A3: Additive

3
-0.9808

A 3 18 

A 1* 6 A 1* 10 I1: Intermediate

3
-0.6932

A 4 12

I2: Intermediate

3
-0.5108

A 3 18 

A 1* 3 A 1* 3 M1: Multiplicative

3
0
A 2 6 

T1: Super-multiplicative

3
0.2877

A 3 12 

A 1* 3 A 1* 3 T2: Super-multiplicative

3
0.6932

A 3 18

T3: Super-multiplicative

3
1.0986

A 2 18 

A = not exposed toA A = exposed toA

B = not exposed to B      B = exposed toB

*Referent category is jointly unexposed (AB )
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interaction was significant at the 5%, 10%, 15%, and 20%
level.

Definition of a "useful gain in power"
For the purposes of this study, a useful gain in power was
deemed to have occurred if: 1) power increased by at least
10% when the Type I error rate was raised from 5% to
20%, and, 2) power reached at least 70% or higher at a
Type I error rate was raised of 20%. For the power gain to
be less than 10%, power must be high (above 85%) at the
5% Type I error rate. Obviously this criteria is somewhat
subjective and is intended as a guide to the interpretation
of the results. It should not be seen as a definitive state-
ment about the utility of raising the Type I error rate in a
particular study.

The perfectly multiplicative (M1) scenario was excluded
from consideration when classifying the power gains as
useful or not useful. In scenario M1, the value of β3 in the
underlying population is zero. Because of sampling varia-
bility, however, some M1 samples will return a positive
test for a non-zero β3. These are false positive tests for
interaction. The power function collapses to the Type I
error rate (the false positive error rate of 5%, 10%, 15%,
or 20%) when data from scenario M1 is analyzed using
model 1.

Results
When the Type 1 error rate is 5%
Asymptotic power results for the Wald test of interaction
are shown in Table 1. As expected, power was highest for

those types of interaction that departed most strongly
from perfect multiplicativity of effects. If the standard
Type I error rate of 5% was used, power for almost all
types of interaction was extremely low when the study size
was 75 cases and 150 controls. For studies with 300 cases
and 600 controls, the power was higher but was still typi-
cally below the range (typically 80% or better) that would
be acceptable if one was designing a study to assess inter-
action. With 1200 cases and 2400 controls, power was at
design levels for almost all types of interaction.

Effect of raising the Type 1 error rate
Table 1 also shows the effect of raising the Type I error rate
on the asymptotic power of the Wald interaction test.
Based on my criteria (10% gain in power and power above
70% when the Type I error rate is 20%), raising the Type I
error rate from 5% to 20% resulted in a useful gain in
power in only seven of the 27 interaction type/study size
scenarios studied (26%). These "middle-ground" scenar-
ios are the cells in Table 1 that are bolded.

The italicized scenarios in Table 1 are the eight situations
(30%) where power was already adequate. In these "high-
ground" situations, raising the Type I error rate to 20%
will result in an appreciable increase in "false positives"
with little or no real gain in power.

The unformatted (neither bolded nor italicized) scenarios
in Table 1 represent the chronically underpowered ("low-
ground") situations in which raising the Type I error rate

Table 1: Effect of Raising the Type I Error Rate on the Statistical Power for the Wald1 Test of Interaction for Three Study Sizes in a 
Case-Control Study of Two Binary Exposures2

Small Study Size (75 Cases & 
150 Controls)

Large Study Size (300 cases & 
600 controls)

Very Large Study Size (1200 Cases & 2400 
Controls)

Type of Interaction Type I Error Rate Type I Error Rate Type I Error Rate

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

S1 Sub-additive 43% 55% 63% 69% 95% 97% 98% 99% >99% >99% >99% >99%
A1 Additive 21% 31% 39% 45% 63% 74% 80% 84% >99% >99% >99% >99%
A2 Additive 26% 37% 45% 52% 75% 84% 88% 91% >99% >99% >99% >99%
A3 Additive 24% 35% 43% 49% 71% 81% 86% 89% >99% >99% >99% >99%
I1 Intermediate 18% 28% 35% 42% 55% 67% 75% 79% 99% 99% >99% >99%
I2 Intermediate 11% 18% 24% 30% 28% 40% 48% 54% 79% 87% 91% 93%

M1 Multiplicative 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%
T1 Super-multiplicative 7% 13% 19% 24% 14% 22% 29% 35% 40% 53% 61% 67%
T2 Super-multiplicative 16% 25% 32% 38% 47% 60% 67% 73% 96% 98% 99% 99%
T3 Super-multiplicative 30% 42% 50% 57% 82% 89% 93% 95% >99% >99% >99% >99%

1In simulations, almost identical results were obtained for the Likelihood Ratio test and Breslow-Day Test
2Bolded table cells indicate "middle-ground" scenarios in which there is a useful gain in power due to raising the Type I error rate. Italicized table 
cells indicate "high-ground" scenarios in which power is already high and raising the Type I error rate is unnecessary. Table cells that are neither 
bolded nor italicized indicate "low-ground" scenarios in which power is so low that raising the Type I error rate does not usefully boost power. A 
useful gain in power was defined as situations where raising the Type I error rate from 5% to 20% resulted in a 10% or greater gain in power, and 
power was above 70% when the Type I error rate was 20%.
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achieves no useful gain in power. This occurred in twelve
of the 27 interaction type/study size scenarios (44%).

Results of the simulations were almost identical to the
asymptotic results for all study sizes. The simulation
results confirmed that power for the Wald test for interac-
tion, the likelihood ratio test for interaction and the Bres-
low-Day test of heterogeneity of the odds ratio, are
essentially identical.

Coverage of the confidence interval for 

Using the simulations, the coverage of the 95% confi-

dence interval for the interaction term  was computed.

This is the proportion of 95% confidence intervals, from
the 1000 simulations for each interaction type, that

included the true (population) value for β3 (per Figure 1).

Ideally, the coverage for a 95% confidence interval should
be 95%. For all the interaction type/study size scenarios
studied, the coverage was adequate, ranging from 93% to
96%. It was 93%–94% in 30% of scenarios, 95% in 44%
of scenarios, and 96% in 26% of scenarios. This con-

firmed that the estimated standard error for  tended to

be consistently estimated by logistic regression across a
range of interaction scenarios, even in the very small study
size scenarios.

Discussion
Two major points emerge from this analysis. First of all, it
is striking that power for testing interaction (at the 5%
level) is very low for several types of interaction, even in
studies as large as 300 cases and 600 controls.

Second, these results call into question the wisdom of
addressing the problem of low power for interaction tests
by raising the Type I error rate. Power was so low in many
of the scenarios studied (44%) that raising the Type I error
rate failed to boost power to an acceptable level (defined
as 70% in this study). In another 30% of scenarios, power
was already above 90% at the 5% Type I error rate, so
there was little benefit from raising the Type I error rate. In
only about 1/4 of scenarios studied was there a useful gain
in power due to raising the Type I error rate. Based on
these data, I recommend investigators do not routinely
raise the Type I error rate when assessing tests of interac-
tion.

Implications for epidemiologic practice
The implications of this study for epidemiologic practice
depend in part on how individual investigators use tests of
interaction. For investigators that see interaction tests as
just one portion of an array of information to be utilized
in the assessment of modification (along with using stra-

tum-specific measures, confidence intervals, apriori
hypotheses and biological knowledge), these results may
be of limited importance, since these investigators do not
use the interaction p-value as the sole basis for determin-
ing whether modification exists.

On the other hand, these results have considerable impor-
tance for investigators who rely on interaction tests as the
sole basis for screening for potential interactions, and for
investigators who rely almost exclusively on interaction
tests to decide whether modification is present. Of partic-
ular concern are the "high ground" scenarios. If a study is
already adequately powered for assessing interactions,
due to a large study size, and the investigators are simulta-
neously screening many exposures and their interaction,
then it will be very counterproductive to raise the Type I
error rate, since this means that the number of spurious
interactions detected by the test is increased without any
tangible increase in the probability of detecting a true
interaction.

Limitations of multiplicative tests of interaction
I studied tests of interaction within a multiplicative model
because they are the statistical procedure most commonly
used to assess effect-measure modification. However, it is
important to note that these interaction tests assess depar-
ture from perfect multiplicativity of effects, and therefore
have profound limitations if the main interest lies in
departure from additivity of effects [1,9,10].

Study limitations
There are a number of limitations to this study. It assumed
no confounding, no missing data, a fixed 1:2 case:control
ratio, and studied a very specific situation – two binary
exposures, each of 40% prevalence in the non-cases.
Power will vary considerably with exposure prevalence,
and would be higher if the variables were continuous, not
binary. Further, only the logistic model was examined.

Perhaps the most profound limitation of this study is that
it represents an application, to a data analysis situation, of
the type of power criteria commonly used when designing
a study. Thus, the choice of a 70% threshold for a useful
gain in power could be criticized as unrealistic. However,
even if the threshold was dropped from 70% to 50%, the
strategy of raising the Type I error rate would result in a
useful gain in power in only eleven of the 27 scenarios
studied (41%).

Conclusion
Investigators need to be aware that power for testing inter-
actions is probably low in many epidemiologic studies.
However, the results of this study suggest that routinely
raising the Type I error rate for interaction tests is not an
effective solution to the problem of the low power for

β̂3

β̂3

β̂3
Page 5 of 7
(page number not for citation purposes)



Epidemiologic Perspectives & Innovations 2007, 4:4 http://www.epi-perspectives.com/content/4/1/4
tests of interaction. I recommend that investigators
should not routinely raise the Type I error rate when
assessing tests of interaction.
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Appendix – Methodologic Details
Type I and Type II Error Rate
The Type I error rate, or alpha, is the probability the study
finds that an interaction between two exposures exists,
when, in truth, there is no such interaction present in the
population. This discrepancy arises because of sampling
variability, i.e., by chance, the sample is a poor proxy for
the population. The Type II error rate, or beta, is the prob-
ability that the study fails to detect an interaction between
two exposures that, in truth, is present in the population.
Power is 1 minus the Type II error rate. Raising the Type I
error rate has the effect of decreasing the Type II error rate
and thus increases the power of an interaction test.

Wald Test for Interaction
The Wald test statistic for the test of interaction (see model
1) is:

The Wald test for interaction follows this power function
[3]:

where F is the cumulative distribution function of the
standard normal variate (µ = 0, σ = 1), α is the two-sided
Type I error rate, and β3 is defined per model 1.

The Wald test statistic follows an approximate chi-square
distribution under large sample conditions and the
assumption of perfect multiplicativity of joint effects (i.e.
assuming the null hypothesis). It has 1 degree of freedom
in the situation of two binary exposures.

Likelihood Ratio Test for Interaction
The likelihood ratio test can also be used to test β3 by com-
paring the log-likelihood for model (1) to the log-likeli-
hood for the same model without the interaction term:

logit px = β0 + β1A + β2B (model 2)

The likelihood ratio test for interaction is:

-2 [log-likelihood(model 2) - log-likelihood(model 1)]

Like the Wald test, this statistic is approximately chi-
square distributed under large sample conditions and has
1 degree of freedom for two binary exposures.

Breslow-Day Test
In contrast to these two model-based statistics (Wald and
Likelihood Ratio), the Breslow-Day test for heterogeneity
of the odds ratio is based on stratified analysis. The test
statistic is:

where nh11 is the count for the doubly unexposed cell of
the hth level of the stratification variable, ORMH is the Man-
tel-Haenszel odds ratio estimate, and h = 2 if both expo-
sures are binary. Like the other two tests, it has an
approximate chi-square distribution under large sample
conditions.
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