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Abstract

The two-phase design consists of an initial (Phase One) study with known disease status and
inexpensive covariate information. Within this initial study one selects a subsample on which to
collect detailed covariate data. Two-phase studies have been shown to be efficient compared to
standard case-control designs. However, potential problems arise if one cannot assure minimum
sample sizes in the rarest categories or if recontact of subjects is difficult.

In the case of a rare exposure with an inexpensive proxy, the authors propose the flexible two-
phase design for which there is a single time of contact, at which a decision about full covariate
ascertainment is made based on the proxy. Subjects are screened until the desired numbers of
cases and controls have been selected for full data collection. Strategies for optimizing the cost/
efficiency of this design and corresponding software are presented. The design is applied to two
examples from occupational and genetic epidemiology. By ensuring minimum numbers for the
rarest disease-covariate combination(s), we obtain considerable efficiency gains over standard two-
phase studies with an improved practical feasibility.

The flexible two-phase design may be the design of choice in the case of well targeted studies of
the effect of rare exposures with an inexpensive proxy.

Introduction

For rare exposures, the power of epidemiological studies
depends mainly on the rarest disease-exposure combina-
tions. For example, in population-based case-control
studies the limiting factor is frequently the number of
exposed cases and/or controls. One approach that may
substantially increase power for these types of studies is
the two-phase study design.

The two-phase design [1-4] consists of an initial (Phase
One) large study with known disease status and easily col-
lectible or inexpensive covariate information. Within this
initial study one selects a subsample on which to collect
detailed covariate data (Phase Two). In Phase Two, one
may deliberately oversample the subjects with the rarest
exposure-disease combinations based on the available
Phase One information, consequently increasing power.
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Appropriate statistical methods [5] correct for the biased
sampling by incorporating the statistical distribution of
the available information among cases and controls from
Phase One. The data collection of Phase Two usually pro-
ceeds in one of two ways. The first approach includes
recontacting selected study subjects from Phase One to
obtain detailed covariate information. However, with sec-
ondary data collection, potential problems may arise if
recontacting subjects is difficult, if cases have died, or if
response rates are low. Alternatively, one may collect full
raw data at first contact for all participants and process
only selected subjects. An example would be a molecular
or genetic epidemiologic study in which biological speci-
mens were obtained for all cases and controls but only a
subsample were genotyped (see [6] for another example).
This may, however, be considered wasteful since only a
fraction of the collected data is used.

As an alternative, we propose a new variant of the two-
phase design called the flexible two-phase design, for
which there is a single time of contact. Phase One data are
collected for all subjects and Phase Two subjects are
selected for immediate complete data collection based on
their basic Phase One information. The key principle of
this new variant is to fix a priori stratum-wise numbers of
cases and controls for full data collection and recruit
Phase One subjects until the required numbers of subjects
in each stratum are reached.

We describe the proposed study design and its implemen-
tation in terms of power, cost/efficiency considerations
and statistical analysis. We illustrate its applicability using
two examples from occupational and molecular/genetic
epidemiology.

Steps in the planning and the analysis of flexible

two-phase studies

We start by defining several key variables and then
describe the proposed set-up for the study design. First,
define Z, a discrete proxy variable for the exposure(s) of
interest (X). Z needs to be collected and available at Phase
One. Then, compute the power for several design options
within the flexible two-phase design (see below). Based
on these computations, select the design option which
produces the best compromise between power and feasi-
bility in terms of subject availability, cost and other study-
specific criteria that will permit achievement of the study
aims.

The four major steps for the set-up of a study with the pro-
posed design are as follows:

Design set-up
1. Identify a stratification variable Z which is an easily
available proxy of the exposure(s) of interest X. The
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number of strata (J) will equal the number of response
choices for Z.

2. For each stratum, fix the number of cases and controls
(n;;), based on study power and cost considerations, for
whom the exposure of interest X and covariates will be
assessed. From n;;, compute their expected distributions
according to X and the numbers of cases and controls who
will need to be screened at Phase One.

Data collection

3. Screen subjects for Z and keep cases and controls for full
data collection (i.e. the variable(s) of interest X and poten-
tial confounders) until the numbers of cases and controls
fixed in step 2 are reached.

4. Within each stratum j, count the number of cases and
controls that were screened in Phase One at Step 3.

Computation of expected numbers and power

As mentioned above, the expected Phase One numbers
depend on the fixed stratum-specific Phase Two numbers.
They also depend on the study hypotheses including
exposure prevalences and odds ratios. Other assumptions,
common to all types of two-phase studies, quantify how
well the Phase One strata predict the exposure of interest
(sensitivity and specificity of proxy Z). The formulas for
expected Phase One and Phase Two numbers are given in
Appendix 1. From these numbers, one can compute, using
specific variance computations given in Schill and
Drescher [5], the expected asymptotic variance and the
statistical power. A corresponding STATA (StataCorp, Col-
lege Station Texas) program for data analysis and power
computations is included as an online add-on to this

paper.

Planning options

A critical issue is how to optimize, in terms of cost and
power, the fixed stratum-wise numbers of cases and con-
trols with full data collection. This complex problem has
been addressed in different contexts [7-10]. However, one
can formulate a general heuristic rule, which has worked
well in our applications using Maximum Likelihood as
the analysis method. Specifically, choose the numbers of
cases and controls for full data collection so that, within
both controls and cases, the overall expected Phase Two
exposure proportions are as equally distributed as possi-
ble. For rare exposures, this means choosing cases and
controls to oversample the rarest exposure categories
among both groups.

Statistical analysis

The collected data can be analyzed using any two-phase
analysis software. As the second phase sample is a biased
sample of the original population, a combined analysis of
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the Phase One and the Phase Two data relies on weighting
of the Phase Two data by the inverse sampling fractions.
The two main methods for analysis are maximum likeli-
hood (ML) and weighted likelihood (WL) which differ in
the weights used; the more efficient ML estimate itera-
tively adjusts these weights using the estimated disease
model. As such software is not readily available, we
included our STATA-based two-phase analysis program
"blogit_2P.ado" [see additional file 1]. The software takes
as input the disease indicator, the stratum indicator, the
Phase One frequencies, the Phase Two frequencies and the
independent variables. A help file accessible from within
STATA "blogit 2P.hlp" [see additional file 2] is also
included as well as an illustrative example [see additional
files 3 and 4]. In this paper, we use the ML approach.

Examples

To demonstrate the potential efficiency of the flexible
two-phase approach, we present two examples from occu-
pational and molecular/genetic epidemiology. In the first
example, we detail the computations for a given design; in
the second, we perform a full search for optimal designs
for given scenarios.

Example I: Metalworking fluids and bladder cancer

A number of population-based case-control studies have
found an association between bladder cancer and metal-
working fluids (MWF) exposure (see Calvert [11] for a
review). However, because of the low prevalence of the
exposure, the numbers of exposed cases and controls in
each study were too small to produce a stable estimate of
the association. We use a flexible two-phase study to illus-

Table I: Scenario for Example |
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trate the efficiency gain over a standard case-control study,
considering as a proxy of MWF exposure "having worked
in the metal industry". In practice, when contacting cases
and controls, for instance in a telephone interview, one of
the first questions to the volunteers would be: "Have you
ever worked in the metal industry?". Based on the answer
to this question the subject would then be included (or
not) in Phase Two; that is, the interview would be contin-
ued to assess a detailed work history and confounder
information.

Table 1 details the assumptions. The study proceeds along
the four steps as follows:

Study design
1. Stratify subjects by Z (Table 1, Line 1).

2. Per stratum, fix the numbers of cases and controls (160
metal-working and 40 non-metal-working controls, 85
metal-working and 20 non-metal-working cases — Table 2
Column 3) to be included and for whom MWF exposure
will be assessed at Phase Two. These numbers were chosen
using our heuristic rule to reach 80% power to detect the
effect of MWF.

Planned data collection

3. Screen cases and controls until the required numbers in
each stratum are reached and assess the detailed exposure
to MWF and potential confounders in this sample of 305
subjects.

Variables and parameters characterizing the set-up

Values of parameters and variables

Stratification/Proxy Z (with | strata)

Past work in metal industry

No: Z =1
Yes: Z=2
Phase One prevalence among controls (‘roi) Z=1:1% =80%

Z =2: 19, = 20%*

Risk factor X (with K outcomes)

Exposure to MWF
No: X =1
Yes: X =2

Disease Model (Odds Ratios) (y,)

vy, = |: baseline risk
Yy = 2%

Phase Two prevalence of X among controls by stratum (Ttol-k)

Z=1:70,, = 97.5%, 10, = 2.5%%
Z =2: 1%, = 75%, 1%, = 25%@

*20% prevalence of having worked in the metal industry
#Exposure to MWF doubles the risk of bladder cancer
&Among non-metal-industry workers, 2.5% exposed to MWF
@Among metal-industry workers, 25% exposed to MWF
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Table 2: Design of the flexible two-phase study for Example |
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Disease Status Metal- Fixed number of Expected Phase One  Expected Proportion Expected distribution
(D) workers subjects to be numbers of subjects of MWF exposure of subjects by MWF in
Z(7) included in Phase to be screened within strata § Phase Two
Two (N X(7y)
(nij)
N, = Max(160/20%, 40/
80%) = 800
Control No (80%*) 40 800*%80% = 640 No (97.5%*) 40%97.5% = 39
Yes (2.5%%*) 40%2.5% = |
Yes (20%*) 160 800%20% = 160 No (75%*) 160%75% = 120
Yes (25%*) 160%25% = 40
N, = Max(85/23.4%, 20/
76.6%) = 364
Case No (76.6%#) 20 364%76.6% = 278.8 No (95.1%#) 20%95.1% = 19.02
Yes (4.9%#) 20%4.9% = 0.98
Yes (23.4%#) 85 364*%23.4% = 85 No (60%#) 85%60% = 51

Yes (40%#) 85+40% = 34

* Values of parameters fixed in Table |

# Values of parameters computed from parameter values fixed in Table | (see Appendix 2)
§ In Phase One controls, the overall expected percentage of MWF exposure is equal to 7%, that is, 2% = 2.5% of 80% non-metal-workers plus 5% =
25% of 20% metal-workers. Similar computations lead to 13% MWF exposure in cases.

4. Record the number of subjects screened in order to
reach the required sample size. At the planning stage,
these numbers are not yet available, but expected num-
bers can be computed. Assuming 20% metal-workers in
the general population, we would expect to screen 800
controls (N,) to obtain 160 metal-workers (20% x 800 =
160). Therefore, the number of non-metal worker con-
trols that would have been screened (N,,) is expected to
be 640 (800-160) of which 40 are included in Phase Two
for detailed exposure assessment. For the corresponding
computations for cases, see Table 2 and Appendix 2.

We note that oversampling the metal-workers has
achieved our aim of increased numbers of MWF exposed
cases and controls. Among the 200 controls, 41 are
exposed (20.5% versus 7% in Phase One) and among the
105 cases, 35 are exposed (33.3% versus 13% in Phase
One) (Table 2, Column 6 and Footnote §.

Figure 1 shows the STATA output of the analysis of the
expected frequencies. The STATA program for this analysis
is included as an additional file (figure 1.do [see Addi-
tional file 3] using the STATA data file MWF.dta [see Addi-
tional file 4] obtained by applying the computations
shown in Appendix 2). In this example d, z, X, Nj;, ny,
respectively denote, the case status (1 = case, 0 = control),
the stratum indicator, the metal fluid indicator (X = 1
exposed, X = 0 unexposed), the stratum-wise numbers in
Phase One, and the Phase Two numbers by stratum and
exposure to metal fluids. The power is computed using a

bilateral Wald test at a 5% level using the following for-
mula: Power = O(B,/se(By)-1.96) = 80.2% where @
denotes the cumulative standard normal distribution, f,
the log-odds ratio and se(p,) its standard error. The
asymptotic standard error se(f,) is 0.247 for the log-odds
ratio and B, = In(2) = 0.693, as the assumed OR is equal
to 2. In contrast, a standard case-control study, in which
200 controls and 105 cases were randomly selected,
would yield a se(f,) = 0.400, corresponding to 40.9%
power using the same formula.

Example 2: Detection of gene-environment interaction
Molecular/genetic epidemiology studies identify genes
involved in disease risk, estimate the strength of the dis-
ease-gene association and investigate modifier factors that
may interact with the susceptibility genes. The study of
interactions between genes and "environmental" factors is
often challenging because of the rarity of having both fac-
tors, i.e., being exposed to the environmental factor of
interest and carrying a deleterious allele.

We present a search for an optimized flexible Two-Phase
design, in this setting, assuming that an inexpensive proxy
of the deleterious allele (e.g., family history of disease) is
available.

The scenarios
We consider a rare deleterious allele G with 1% prevalence
(PG), interacting with an environmental exposure E with
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list, noobs sepby(d)

+

| =z d tau_ij pi_ijk
| 1 0 .8 975
| 1 0 .8 025
| 2 0 .2 .75
| 2 0 .2 .25
| 1 1 .7663551 .9512195
| 1 1 .7663551 .0487805
| 2 1 .2336449 .6
| 2 1 .2336449 .4
+

//

using expected Phase

. blogit_2P d z Nij nijk X
note:

note:

number of strata 2
total number of cases (d=1) in
total number of controls (d=0)
total number of cases (d=1) in
total number of controls (d=0)

Maximum Likelihood estimation
number of iterations 2

mat b=e (b)

mat cov=e (V)

// extract the expected coeff

r X

scalar betaX=b[1l,1]

display betaX

.6931474
scalar se_betaX=sqrt(cov[l,1]
display se_betaX

.2466637

fo

display power
80.23627

X nij Nij
0 40 640
1 40 640
0 160 160
1 160 160
0 20 278.8
1 20 278.8
0 85 85
1 85 85

// fit ML estimate for the logistic regression of 2 phase data

One (Nij) and Phase Two

you are responsible for interpretation of non-count Phase One variable
you are responsible for interpretation of non-count Phase Two variable

Phase One 364
in Phase one 800
Phase Two 105
in Phase Two 200

using the EM algorithm

| Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
X | .6931474 .2466637 2.81 0.005 .2096954 1.176599
_cons | —.8556663 .0699243 -12.24 0.000 -.9927154 -.7186172

// extract the (expected) coefficient and variance/covariance matrix

icient (exp(.6931474)=2)

)

// compute the power in % for a bilateral Wald test at the 5% level
scalar power=100*normal (betaX/se_betaX-1.96)

19.02439
.97561
51

34

(nijk) data

and its standard error

Figure |
STATA output for Example I.
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20% prevalence (PE). The odds ratios for E, G and their
interaction (I) are respectively 2, 3 and 5 (Table 3).

We further assume that the proxy of the susceptibility gene
(SG) and the environmental exposure (E) are available at
Phase One for an unlimited number of controls. How-
ever, we restrict the number of cases available in Phase
One to a maximum of 2000 cases. We further assume that
capacities for genotyping restrict the total number of sub-
jects (cases + controls) that can be included in Phase Two
to a maximum of 1200 subjects. We assume that the cost
of genotyping is 20 times the cost of screening. Such a cost
ratio would arise if, for example, a SNP array costs $100
and 15 minutes for a trained interviewer screening a sub-
ject for E and SG costs $5. We repeat the design search for
each combination of sensitivity (Se) and specificity (Sp)
0of 0.6,0.7, 0.8, and 0.9.

Planning the design

The aim of the flexible two-phase approach is to choose
subjects for genotyping to optimize the study power for
given costs. This is achieved by oversampling subjects
with positive gene proxy and environmental exposure.

In practice, such oversampling could be done during case/
control recruitment using a short interview that allows
assessment of the environmental exposure and the gene
proxy (e.g., a family history of disease) and getting a
blood/buccal sample (for genotyping) only for the sub-

Table 3: Scenarios for Example 2
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jects sampled for Phase Two based on the results of this
first interview.

Step 1: The stratification is by gene surrogate and environ-
mental exposure (Table 3, line 1).

Step 2 entails choosing the stratum-wise numbers of cases
and controls to be included in Phase Two. We use our gen-
eral heuristic rule with respect to E and fix at 50% the tar-
get numbers of E+ and E- to be included in Phase Two
among cases and controls. The amount by which we over-
sample SG+ will be considered through use of two addi-
tional parameters, the proportion of controls p0 with SG+
and the proportion p1 of cases with SG+. For example, if
we selected 800 controls and 400 cases with proportions
p0 = 80% and pl = 60%, this would correspond to
800*50%*80% = 320 E+ SG+ controls, 400*50%*60% =
120 E+ SG+ cases, 800*50%*20% = 80 E+ SG- controls
and so on.

Comparing designs

We now consider a series of design options for this exam-
ple for which we compare power and cost. To meet the
constraints on availability and capacity fixed above, the
designs considered have numbers of cases ranging from
100 to 600 and numbers of controls from 400 to 1100 in
steps of 100, with a maximum of 1200 subjects to be
included in Phase Two. For each of these combinations,
p0 and p1 are varied from 40% to 90%. This corresponds

Variables and parameters required for set-up

Formulas and values of parameters

Stratification/Proxy Z (with ] strata)

Environmental exposure E and Gene proxy Sg
J=4
Z=1:ESg, Z=2FESgt, Z=3:E*Sg, Z=4 E*S*

Phase One prevalence among controls (‘roj):
Pz =20%
Pe=1%

0, = Pr(E)Pr(Sg?) = (I - Po)[(I-Se)Ps+Sp(I-Pg)]
10, = Pr(E")Pr(Sg*) = (I - Pg)[SePg+(1-Sp).(1-Pg)]
103 = Pr(E*)Pr(Sg") = Pe[(1-Se)Pg+Sp(1-Pg)]
0, = Pr(E*)Pr(Sg*) = Pe[SeP+(1-Sp).(1-Pg)]

Risk factor X (with K outcomes)

Exposure to E and exposure to G: K = 4
X=LEG,X=2FEG,X=3E'G,X=4FEG*

Disease Model (Odds Ratios )

V= Ly =3, 3= 2,9, = vy X 3 x OR; = 30

Phase Two prevalence of X among controls by stratum (Ttoik)

Z=1:19,, = (I -PYSp(I-P&)/Pr(Se),

0= 1-n%, n0;=n0,=0

Z=2:2%,= (1 - P(1 - Sp)(1-P)/Pr(Sg").

M09 = | - 10y, m0y3 =10, = 0

Z=3: TEOSI = 7-5032 =0, 7-5033 = PE SP(I'PG)/Pr(SG-)’

m034= | - 105

Z=470 ==n%,=0,1%=Pg(l - Sp)(1-P5)/Pr(Sc*),
M04e= 1 -1l

*Se = sensitivity; Sp = specificity
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to several hundred possible designs for each combination
of sensitivity and specificity of SG.

Table 4 shows, for each combination of sensitivity and
specificity, the design which achieves the maximal power
to detect OR; = 5. Only designs achieving 80% power are
shown. For example, if SG has 80% specificity and 70%
sensitivity, the design with the highest power would
include 400 cases and 800 controls with p; = p, = 90%
SG+ (Table 4, line 4). We would, thus, include 90%*400
=360 SG+ cases and 720 SG+ controls for genotyping. The
expected numbers of cases to be screened would be 1889
and the expected number of controls would be 8780.

Table 5 shows, for each combination of sensitivity and
specificity, the design which achieves the minimal cost
with 80% power to detect OR, = 5. Using the same exam-
ple as above, this design would include 300 cases with
80% SG+ and 600 controls with 90% SG+. This would
imply screening 1259 cases and 6585 controls and would
correspond to a 25% cost decrease compared to the most
powerful design (1292 vs. 1733) (Table 5, line 4).

Note that the better the proxy, the more effective the flex-
ible two-phase approach. For example, for a gene proxy
with 70% specificity and 80% sensitivity, the most cost
effective design costs 1534 units whereas the most cost
effective design for a gene proxy with 90% specificity and
90% sensitivity costs 1082 units.

Comparison with standard case-control studies

For the scenario considered, the most powerful standard
case-control study with 1200 genotyped subjects would
include 300 cases and 900 controls with an expected
var(B;) = 0.96, corresponding to a statistical power of
37%. Achieving 80% power would require var(f;) = 0.33.
Thus, for a standard case-control study to attain 80%
power, it would require genotyping of 870 cases (i.e. 300
x 0.96/0.33) and 2610 controls (i.e. 900 x 0.96/0.33),

http://www.epi-perspectives.com/content/5/1/4

totaling a cost of 3480 units. This compares to 1534 units
in the most cost-effective flexible two-phase design
assuming 70% specificity and 80% sensitivity.

Comparison with balanced two-phase studies

A second comparison of interest would be a comparison
with balanced two-phase studies, the design that is gener-
ally recommended in papers on two-phase studies (see
[1,2,12]). As mentioned in the introduction, these studies
start from a fixed Phase One sample and draw equal num-
bers in each stratum for Phase Two data collection. In
order to be comparable to our flexible design, we consid-
ered a design in which 8000 controls and 2000 cases were
assessed in Phase One and 800 controls and 400 cases
included in Phase Two. As the design is balanced, we
selected equal numbers, i.e., 200 controls and 100 cases
from each stratum defined by SG x E.

This balanced Two-Phase design is always less efficient
than the Flexible Two-Phase design although more effi-
cient than the standard case-control design. For instance,
in the preceding example with 70% specificity and 80%
sensitivity, the expected variance is var(p;) = 0.47, corre-
sponding to a statistical power of 65%. The corresponding
cost is 1200+(10000:20) = 1700 units.

Discussion

Two-phase studies are efficient compared to standard
case-control designs. The variant design presented in this
paper improves on some aspects of standard two-phase
studies. Specifically, with respect to data collection there is
only one time of contact. At a time when studies are strug-
gling with decreasing response rates, collection of all nec-
essary data at a single time of contact may result in
improved overall participation rates. Moreover, for rare
exposures, minimum numbers of exposed subjects can be
guaranteed in this design, thus increasing the power, even
compared with standard balanced Two-Phase designs.
The disadvantage of the flexible two-phase design com-

Table 4: Designs with maximal power of detecting the interaction, according to sensitivity and specificity

Gene-surrogate Flexible two-phase design options Expected Phase One counts Power# Cost*
Spec Sens No ny Pot Pt No N,

70% 80% 800 400 90% 90% 5902 1373 83% 1564
70% 90% 800 400 90% 90% 5882 1325 87% 1560
80% 60% 800 400 90% 90% 8824 1988 87% 1741

80% 70% 800 400 90% 90% 8780 1889 91% 1733

80% 80% 800 400 90% 90% 8738 1800 94% 1727
80% 90% 800 400 90% 90% 8696 1718 96% 1720
90% 60% 900 300 90% 90% 19286 2000 98% 2264
90% 70% 900 300 90% 90% 19104 2000 99% 2255
90% 80% 900 300 90% 90% 18925 1960 99.6% 2244
90% 90% 900 300 90% 90% 18750 1835 99.8% 2229
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Table 5: Designs with minimum cost among designs with 80% power of detecting the interaction

Gene-surrogate Flexible two-phase design options Expected Phase One counts Power# Cost*
Spec Sens No n Pot Pt No N,

70% 80% 700 500 90% 80% 5163 1525 81% 1534
70% 90% 600 500 90% 80% 4412 1472 80% 1394
80% 60% 700 300 90% 90% 7721 1491 80% 1461

80% 70% 600 300 90% 80% 6585 1259 80% 1292
80% 80% 500 300 90% 80% 5461 1200 80% 1133
80% 90% 400 400 90% 80% 4348 1528 81% 1094
90% 60% 400 400 70% 50% 6667 1683 81% 1217
90% 70% 500 300 50% 50% 5896 1169 80% 1153
90% 80% 500 300 40% 60% 4673 1307 80% 1099
90% 90% 500 300 40% 50% 4630 1019 82% 1082

# Analysis approach: Maximum likelihood

* the study cost is computed as the sum of the number of screened subjects divided by 20 plus the number of subjects included in Phase Two.

T po is the proportion of S;* controls included in Phase Two
I p, is the proportion of S;* cases included in Phase Two

pared to other designs, including standard two-phase, is
the additional complexity in design planning. Another
possible disadvantage is that the categories that are rela-
tively easy to fill will be filled quickly during recruitment,
while the hard-to-fill categories will take longer to reach
their sampling targets. This can produce complex relation-
ships between covariates and recruitment times. This
could be alleviated by the randomized recruitment
approach proposed by Weinberg and Sandler [13] in
which the most common Phase One category would be
included in Phase Two with a given probability, chosen so
that all categories are filled in at about the same time.

In the examples presented, we focused on rare exposures
for which one could identify inexpensive proxies. Using
our proposed heuristic rule, this allows oversampling the
rare exposure and thus increasing power. This approach is
efficient provided the analysis method used is maximum
likelihood, thus, implicitly assuming non-differential
misclassification, i.e., that the proxy is not a confounder.
In practical terms, this means that the disease risk, given
exposure, is the same in all strata. If the disease risk varies
across strata, the effect of exposure may have to be
assessed separately in each stratum resulting in reduced
power to detect the effect of exposure in the underrepre-
sented strata.

One major consideration for the flexible two-phase design
is the availability of an adequate proxy for Phase One
screening. The proxy must be easily obtained on all
screened subjects but must also have high sensitivity and
specificity. For a study focused on occupational exposures,
as in example 1, a question about working in the industry
of interest is easily collected and should yield a reasonable
proxy for exposure. This binary stratification for the proxy
may be extended to increase sensitivity and specificity. For

example, one could ask about duration of work in a par-
ticular industry, thereby obtaining a proxy of the actual
cumulative dose. Similarly, a positive family history was
previously shown [14] to be a good proxy for a rare gene
with a strong effect. However, as the effect of the allele
decreases and its frequency increases (as would be the sit-
uation for a low-risk gene) the sensitivity and specificity
for family history decreases. In such situations, an alterna-
tive proxy for G may need to be considered, such as age at
diagnosis, or a quick inexpensive physiologic test during
the in-person interview at Phase One. Of course, the more
information obtained at Phase One, the more expensive
Phase One becomes.

We acknowledge that a gene-environment interaction
odds ratio of 5 may be rather extreme for most diseases,
particularly given some recent findings, as in [15]. We are
currently working on a more topic-oriented comparison
of different study designs for detecting gene-environment
interactions using a wider range of scenarios and includ-
ing the Flexible Two-Phase design and case-only design
(under the assumption of independence of Genetic and
Environmental factors in the population).

In the present paper, we focused on the estimation of a
single odds-ratio. However, dose-response estimation is
possible, as long as detailed data are available at Phase
Two. Similarly, it is possible to adjust for confounders as
long as the relevant data are available in Phase Two. How-
ever, since the flexible two-phase design is mostly targeted
on predefined hypotheses, especially if one oversamples
some strata, there may be limited power to test other
hypotheses or perform exploratory analyses. For example,
exposure to some aromatic amines increases risk for blad-
der cancer, but this exposure is rare in the metal industry.
Thus, the design we considered would have low power for
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detecting this risk. Many epidemiologic studies are explor-
atory in that they assess the effects of a large spectrum of
factors without focusing on predefined hypotheses. The
Flexible Two-Phase design is not adapted to this situation
and focuses necessarily on a restricted number of explic-
itly stated hypotheses. We are, however, convinced that in
many circumstances, only studies with predefined
hypotheses will allow progress in understanding disease
etiology.

Conclusion

In conclusion, the flexible two-phase design expands the
advantages of two-phase designs to substantially increase
power for studies of rare disease-exposure combinations.
The flexible two-phase design may be the design of choice
in well targeted studies of the effect of rare exposures for
which inexpensive proxies are available.
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MWF: metal working fluid; SG: the surrogate of the gene
G considered as a risk factor.
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Endnotes

Appendix I: Computation of expected numbers for a given
design and scenario

Let Z denote the proxy variable for X, the exposure of
interest and define

- T}Q the Phase One proportion of the jth stratum within

controls.

- ﬂjok the Phase Two proportion of the kth outcome of X

within stratum j of controls.

The proportion of cases in each stratum depends on the
corresponding proportion of controls and the assumed
odds ratios (4,). Let us denote by

q; the odds ratio,

q; = D, 75XV
k

stratum-specific =~ weighted

http://www.epi-perspectives.com/content/5/1/4

rjl- the Phase One proportion of the jth stratum within

0
j

%T})qu

1 T qu
cases, 7; =

njl-k the Phase Two proportion of the kth outcome of X

within stratum j of cases, n}k = ﬂ](-)k X l’;—k
J

The flexible two-phase approach starts with fixed numbers
of controls (ngy) and cases (ny;), from which one com-
putes

- Nj;, the expected Phase One numbers of cases and con-
trols to be screened in each stratum j,

- niy, the expected Phase Two stratum-wise numbers in
each exposure category k

Phase One:

The overall expected number of Phase One controls N,

ne
and cases N, to be screened are N, =max % and
5

"

N, = max #

Y

From these, one obtains the stratum-specific expected
Phase One numbers

Ng;=Nyx 77 and Ny;= N, x 7
Phase Two:

The expected numbers in each Phase Two exposure cate-

1

gory are computed as n?k =1p; X n?k and n}k =19 X T

Appendix 2: Expected numbers for Example |
Using the notations from appendix 1, letJ =2 and K= 2,

70; (the Phase One proportions), n?k (the stratum-wise

Phase Two proportions) among controls and y, the odds

ratio with MWF exposure take the values presented in
Table 1.

Then, following the formula given in appendix 1,
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the weighted odds-ratio in stratum 1 of non metal-work-
ers is

g, =m0 Xy, + 7w Xy, =0.975x1+0.025% 2 =1.025

the weighted odds-ratio in stratum 2 of metal-workers is

G, =Y Xy, + 719 Xy, =0.75x1+0.25x2 =1.25

From this, we obtain the Phase Two proportions of metal-
fluid exposure (k = 2);

In stratum 1 of non-metal working cases:
1 _ 0 V1 _ 2 _ 0,

iy =My X a0 0.025x 555 = 4.9%

In stratum 2 of metal-working cases:

n%z = 7:32 x% = 0.25x% =40%

The Phase One proportion of metal-workers among cases

0
1 T2><q2

is 7= 202 0.20x1.25
LT ixdqj
j

~ 0.20x1.25+0.80x1.025

=0.234

From these quantities, the expected numbers can be
derived for a given design as illustrated in table 2

Additional material

Additional file 1

This is a text file containing the code of the Stata statistical software
(StataCorp. 2007; Stata Statistical Software: Release 9 and onwards.
College Station, TX: StataCorp LP.) for fitting two-phase data. It can be
accessed using any text processor but can only be executed within Stata. It
should be saved under the name blogit_2P.ado.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1742-
5573-5-4-S1.txt]

Additional file 2

This is a help file describing the preceding program and its options. In can
only be displayed as a help file from within Stata. It should be saved under
the name blogit_2P.hip.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1742-
5573-5-4-82.txt]

http://www.epi-perspectives.com/content/5/1/4

Additional file 3

This is a text file containing the code of the Stata statistical software for
performing the power computation for Example 1 using the above program
and performing the computations shown in figure 1. In reads in the data
in the data file MWF.raw included as Additional file 4. It can be accessed
using any text processor but can only be executed within Stata. It should
be saved under the name figurel.do.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1742-
5573-5-4-S3.txt]

Additional file 4

This is text file containing the data obtained by performing the computa-
tions shown in Appendix 2. It is used by the Stata program figurel.do
included as Additional file 3. It should be saved under the name mwf.raw.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
5573-5-4-4.txt]
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