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Abstract
Regression adjustment for the propensity score is a statistical method that reduces confounding
from measured variables in observational data. A Bayesian propensity score analysis extends this
idea by using simultaneous estimation of the propensity scores and the treatment effect. In this
article, we conduct an empirical investigation of the performance of Bayesian propensity scores in
the context of an observational study of the effectiveness of beta-blocker therapy in heart failure
patients. We study the balancing properties of the estimated propensity scores. Traditional
Frequentist propensity scores focus attention on balancing covariates that are strongly associated
with treatment. In contrast, we demonstrate that Bayesian propensity scores can be used to
balance the association between covariates and the outcome. This balancing property has the effect
of reducing confounding bias because it reduces the degree to which covariates are outcome risk
factors.

Introduction
Regression adjustment for the propensity score is a statis-
tical method that reduces confounding from measured
variables in observational data. The idea is to use the pro-
pensity score, defined as the probability of treatment
given measured confounders, to build treatments groups
that are similar with respect to outcome risk factors [1].
Patients with the same propensity score have the same dis-
tribution of measured confounders. Provided that there is
no unmeasured confounding, we obtain unbiased esti-
mates of the treatment effect by comparing treatment
groups within levels of the propensity score. Analytic tech-
niques using propensity scores include stratifying on

quintiles of the propensity score, or using the propensity
score as a covariate in a regression model for the outcome.
Other methods using matching or weighting are available
[2].

Recently, McCandless, Gustafson and Austin [3] proposed
a statistical method which combines regression adjust-
ment for the propensity score with Bayesian techniques.
Their proposed Bayesian propensity score analysis (BPSA)
models the propensity score as a latent variable that is
integrated from the posterior distribution for the treat-
ment effect. BPSA fits regression models for the outcome
and treatment simultaneously rather than one at a time.
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When estimating the propensity scores, BPSA incorpo-
rates prior information about the relationship between
the outcome and propensity score within treatment
groups. In contrast, standard analytic methods estimate
propensity scores from the marginal model for treatment
given measured confounders.

Other Bayesian techniques using propensity scores are
given by Hill and McCulloch [4] and Hoshino [5]. The
approach of Hill and McCulloch [4] uses nonparametric
modelling of the outcome using Bayesian additive regres-
sion trees. It has the advantage that the user is not required
to supply modeling assumptions about the manner in
which variables are parametrically related. Hoshino
describes a Markov chain Monte Carlo technique for fit-
ting propensity models to observational data [5].

McCandless et al. [3] use simulations to evaluate the per-
formance of BPSA. They demonstrate that if the regression
model for the relationship between outcome and propen-
sity score is correctly specified, then BPSA permits more
efficient estimation of the propensity scores compared to
other non-Bayesian methods. However, when the out-
come regression model is incorrectly specified, this can
adversely impact BPSA and give propensity score esti-
mates that are asymptotically biased. Thus it is unclear
whether BPSA will outperform standard non-Bayesian
approaches in real data applications. In practice, statistical
models for the outcome variable are only approximations.

An appealing feature of propensity score techniques is
that simple diagnostics tools have been developed to
compare the performance of competing propensity score
estimates for control of confounding. Conditional on the
propensity score, treatment and confounders are inde-
pendent. The distribution of the confounders should be
similar across treatment groups. This can be empirically
verified by comparing summary statistics such as the
mean and variance for covariates in treatment versus con-
trol. If the distributions are similar then this indicates that
treatment effect estimates are unconfounded. Following
convention in the literature, we refer to this diagnostic
procedure as checking covariate balance. A detailed discus-
sion is given by Austin and Mamdani [2].

The balancing properties of propensity score estimates
have been well studied. Austin and Mamdani [2] and Aus-
tin et al. [6] studied the impact of different variable selec-
tion strategies on the balancing properties of estimated
propensity scores. The authors show that including non-
confounders in the model for the propensity score can
reduce the amount of covariate balance on the confound-
ers. Matching on the propensity score produces greater
balance compared to stratifying on quintiles of the pro-

pensity score. Austin et al. [7] investigated covariate bal-
ance in settings where there are unmeasured confounders.

The logic of checking covariate balance provides an
opportunity to evaluate the performance of BPSA. We can
empirically verify if the propensity score estimates yield
similar balance compared to conventional methods.
Accordingly, our objective is to study covariate balance for
BPSA. In what follows, we present a case-study of an
observational study of the effectiveness of beta-blocker
therapy in British Columbia heart failure patients. In the
example, there is strong confounding because beta-block-
ers are preferentially prescribed to younger, healthier
patients. We analyze the data using BPSA and compute
propensity estimates from the posterior distribution of
the propensity scores. We study balance with respect to
treatment when stratifying on the estimated propensity
scores. Our analysis reveals that BPSA gives worse balance
compared to conventional propensity scores estimates
calculated from the marginal model for treatment. The
covariate distributions differ in treatment versus control.
However, we then show that BPSA yields improved in bal-
ance with respect to the outcome. By this we mean that
stratifying on BPSA propensity score estimates reduces the
strength of the association between the covariates and
mortality. This reduces confounding bias because it
reduces the impact of covariate imbalances between treat-
ment groups. Thus BPSA makes a tradeoff between bal-
ancing baseline covariates with respect to the treatment
versus the outcome variable. In contrast, conventional
propensity score estimates are calculated from the mar-
ginal model for treatment. They handle all confounders
equally, regardless of whether they are important out-
come risk factors.

Estimating the effectiveness of beta-blocker 
therapy in heart failure patients
To investigate the ability of BPSA to control confounding,
we consider the example of an observational study of the
effect of beta-blockers on one year all-cause mortality in
heart failure patients from British Columbia. Beta-block-
ers are a class of cardiovascular therapies which act on the
beta-adrenergic nervous system to improve heart function
[8]. Randomized trials show that they reduce in mortality
in heart failure patients, but there is interest in quantifying
the magnitude of this effect within the general popula-
tion, including the very elderly [9]. In Canada, beta-block-
ers are more often prescribed to patients who are young,
healthy and with fewer comorbidities [10]. Because
treated patients in the population are healthier than
untreated patients, we expect that a crude comparison of
mortality rates will be confounded and tend to exaggerate
the benefits of beta-blocker therapy. Treated patients will
have lower mortality because they are in better health,
even in the absence of any benefit of beta-blockers.
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In this study, we obtained administrative health data for
one year of follow-up on 6969 patients discharged from
British Columbia hospitals in 1999 and 2000. Using
records of hospitalization and drug prescription claims,
we compiled information on demographic characteristics,
comorbid medical conditions and medications dispensed
from community pharmacies throughout the province.
Vital status at the end of follow up was established by elec-
tronic linkage of medical records to death certificates. Full
details are provided elsewhere [8,11]. After one year, 1755
patients died, and the mortality rate among treated
patients was 19% versus 27% among untreated patients.
The crude odds ratio for the association between beta-
blockers and mortality is 0.64 with 95% credible interval
(0.55, 0.75). In contrast, meta-analyses of randomized
controlled trials consistently report a 30% reduction in
mortality with beta blocker use [9]. This suggests that the
association between beta-blocker therapy and mortality is
confounded due to measured and unmeasured indica-
tions for disease severity. To estimate the treatment effect
analytic adjustments are required, and this provides a test
case for comparing the performance of BPSA with other
methods.

Bayesian propensity score analysis: Data, models and 
estimation
Let X denote a binary variable representing exposure to
beta-blockers. We set X equal to one if the subject was dis-
pensed a beta-blocker within 30 days of discharge from
hospital and zero otherwise. The binary response variable
Y is set equal to one if the subject died within one year of
discharge from hospital and zero otherwise. Let C = (C1,
C2,..., Cp) denote a vector of p = 21 potential confounding
variables measured on or before hospital discharge
including demographic characteristics: age (categorical
with four levels; <65, 65-74, 75-84, ≥ 85 years), sex
(binary with one indicating female and zero otherwise);
indicator variables for comorbid conditions: cerebrovas-
cular disease, chronic obstructive pulmonary disorder
(COPD), hyponatremia, metastatic disorder, renal dis-
ease, ventricular arrhythmia, liver disease, malignancy,
shock; indicator variables for dispensation of heart failure
medications within thirty days of hospital discharge: ang-
iosin converting enzyme (ACE) inhibitors, angiotensin II
receptor blockers (ARB), calcium channel blockers (CCB),
digoxin, diuretics, statins; and characteristics of the index
hospitalization: indicator of transferred status, hospital
length of stay in days. In order to ease the specification of
intercept terms in regression modelling, we set the first
component of C (denoted C0) to be equal to one.

To model the propensity score and relationship between
Y, X and C, we use two logistic regression models. Follow-
ing McCandless et al. [3], we let

The quantity β models the treatment effect, while the
parameter γ = (γ0,..., γp) is a (p + 1) × 1 vector of regression
coefficients which identifies the propensity score, given by
Z = logit{Pr(X = 1|C)} = γTC. Following Rubin and Tho-
mas [12], we define the propensity score as the log odds
of treatment given measured confounders. This definition
differs slightly from the usual definition in the literature,
but it eases the analytical tractability of studying propen-
sity score estimates. In practice, both definitions give sim-
ilar treatment effect estimates because the log odds
transformation is monotonic [12].

In equation (1), we use regression splines to flexibly
model the nonparametric relationship between the pro-
pensity score and outcome variable. In the summation

, the quantities gj {·}, j = 1,..., l = 3 are

natural cubic spline basis functions with l = 3 knots (q1, q2,

q3), and regression coefficients ξ = (ξ1, ξ2, ξ3). The choice

of l = 3 knots reflects a trade off between smoothness and
complexity. Alternatively, we could use hierarchical mod-
els to model uncertainty in the location or number of
knots.

We assign prior distributions for the model parameters β,
γ, ξ as

where  =  =  = {log(15)/2}2. The value for 

models the belief that the odds ratio for the treatment
effect is not overly large and lies between 1/15 and 15

with probability 95%. The values for  and  make

similar modelling assumptions about the prior magni-
tude for the association between Y and Z given X, and also
the association between C and X.

The regression models in equations (1) and (2) give a like-
lihood function for the data. Combining the likelihood
and prior distributions, we can sample from the posterior
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distribution of the treatment effect β and nuisance param-
eters γ, ξ using Markov chain Monte Carlo. Conception-
ally, the implementation involves a two step iterative
procedure: First, impute the propensity score parameter γ.
Second, fit a complete data step to estimate the treatment
effect β and ξ given the propensity scores. Successive iter-
ations average over uncertainty in the propensity scores.
The approach has close connections to the EM algorithm
and multiple imputation. Computer code for implement-
ing BPSA in the software package R [13] is available [see
additional file 1]. A detailed discussion of implementing
BPSA is given in McCandless et al. [3].

Before applying BPSA to the data, we first select the knots
used in the spline regression for the relationship between
mortality and propensity score. To choose the knots, we fit
the logistic regression model given in equation (2) via
maximum likelihood and compute the fitted values. The
three knots are chosen as q1 = 0.10, q2 = 0.18, q3 = 0.24,
which define quartiles of the estimated propensity scores.
We then apply BPSA to the data by sampling from the pos-
terior density P(β, ξ, γ|data). We run a single MCMC chain
of length 100 000 after discarding 10 000 initial itera-
tions. Sampler convergence is assessed by simulating sep-
arate MCMC chains with overdispersed starting values

and the diagnostic tools supplied in the CODA package in
R [13].

Analysis results
The results are given in Table 1 under the heading "BPSA",
which contain posterior means and 95% credible intervals
for the treatment effect β and the regression coefficients γ.
We omit estimates of ξ because the quantity is a nuisance
parameter with an interpretation that depends on the
parameterization of the natural splines in equation (1).

While the priors distributions are plausible, they may
nonetheless be informative. We repeat the analysis by fix-
ing the prior variances equal to 103 rather than {log(15)/
2}2. Additionally, we experiment with uniform priors
bounded on the interval [-10, 10]. The resulting infer-
ences for β are similar to those in Table 1 and differ by less
than 0.03 on the log odds scale. For the parameter γ, the
MCMC output is similar under different priors, although
there is less shrinkage towards origin using the unin-
formative priors. Posterior means differed by at most 0.05
for all covariates except metastatic disorder and malig-
nancy.

Table 1: Log odds ratios (95% CIs) for the treatment effect β and the regression coefficients γ calculated using BPSA and PSA.

Description Parameter Log Odds Ratio (95% Interval Estimate)
BPSA PSA

Beta blocker β -0.21 (-0.37, -0.05) -0.31 (-0.46, -0.15)
Demographics

Female Sex γ1 0.17 (0.06, 0.29) 0.12 (-0.01, 0.25)
Age

< 65 (reference) . 0.00 0.00
65 - 74 γ2 -0.19 (-0.32, -0.04) -0.09 (-0.3, 0.12)
75 - 84 γ3 -0.40 (-0.56, -0.24) -0.21 (-0.41, 0.00)
> 85 γ4 -0.71 (-0.94, -0.46) -0.37 (-0.59, -0.14)

Comorbid conditions
Cerebrovascular dis. γ5 -0.11 (-0.67, 0.44) 0.25 (-0.46, 0.96)
COPD γ6 -0.32 (-0.60, -0.06) -0.89 (-1.30, -0.49)
Hyponatremia γ7 -0.02 (-0.26, 0.21) 0.03 (-0.33, 0.39)
Metastatic disorder γ8 -1.42 (-2.33, -0.56) -0.40 (-1.37, 0.57)
Renal disease γ9 -0.17 (-0.32, 0.01) 0.38 (0.15, 0.62)
Ventricular arrhythmia γ10 -0.12 (-0.63, 0.44) 0.12 (-0.62, 0.86)
Liver disease γ11 -0.52 (-1.03, -0.08) -1.11 (-2.04, -0.19)
Malignancy γ12 -0.78 (-1.19, -0.34) -0.06 (-0.57, 0.45)
Shock γ13 -0.06 (-0.56, 0.39) -0.12 (-0.83, 0.58)

Hospitalization
Transferred γ14 -0.41 (-0.58, -0.25) -0.01 (-0.22, 0.20)
Stay (10 day intvs.) γ15 -0.13 (-0.18, -0.09) -0.05 (-0.11, 0.01)

Heart failure medications
Digoxin γ16 -0.02 (-0.11, 0.07) 0.00 (-0.14, 0.13)
Diuretic γ17 0.28 (0.09, 0.48) 0.72 (0.54, 0.90)
CCB γ18 0.22 (0.08, 0.35) 0.27 (0.10, 0.44)
ACE inhibitor γ19 0.29 (0.11, 0.45) 0.61 (0.47, 0.76)
ARB γ20 0.18 (-0.06, 0.46) 0.53 (0.19, 0.87)
Statin γ21 0.91 (0.65, 1.24) 0.94 (0.76, 1.12)
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For comparison, we also apply a propensity score analysis
(PSA) to the data. We define PSA as the following two step
procedure: First, fit the logistic regression model in equa-
tion (2) by maximum likelihood and compute the esti-
mated propensity scores from the fitted values. Next, fit
the model in equation (1) by maximum likelihood, sub-
stituting the fitted values in place for the true propensity
scores. PSA is a standard method for controlling con-
founding [2]. It is identical to BPSA, except that it fits the
regressions models in equations (1) and (2) one at at time
rather than simultaneously. PSA is implemented using the
same knots (q1, q2, q3) as BPSA. The results are given in the
second column of Table 1 under the heading "PSA".

As expected, the estimates for the treatment effect β from
BPSA and PSA are less than zero and the interval estimates
exclude zero, indicating that beta-blockers reduce mortal-
ity in heart failure patients. But the treatment effect esti-
mates are slightly different. BPSA gives an odds ratio of
exp(-0.21) = 0.81 whereas PSA gives exp(-0.31) = 0.73.
BPSA and PSA also give different inferences for γ. The dif-
ferences in point estimates of γ are substantial, although
they are generally small compared to the 95% interval
estimates. From equation (2), we can see that the param-
eter γ models the propensity score in the sense that if γ is
known then the propensity score for a patient with covari-
ate vector C is given by γTC. Because the estimates of γ dif-
fer for BPSA versus PSA, this suggests that the propensity
score estimates also differ.

Which inferences should we prefer? BPSA and PSA use
identical models, but yield qualitatively different answers.
The reason is because BPSA fits regression models for Y
and X simultaneously rather than one at at time. McCan-
dless et al. [3] conducted detailed simulations and
showed that if the outcome model in equation (1) is suf-
ficiently non-parametric to capture the dependence
between Y and Z, then BPSA gives more efficient estimates
of the propensity scores. But for the heart failure data the
true data generating process is unknown.

To explore the results in greater detail, we compare the

estimated propensity scores from either method. Let 

denote the estimate for γ obtained from PSA and let

 denote the posterior mean for γ from BPSA. The

estimated propensity score from PSA is

, whereas for BPSA it is

. Figure 1 plots  versus 

for a random sample of 1000 subjects in the study. The
quantities have correlation equal to 0.85, but their
dependence is nonetheless heterogeneous. The linear
clustering in the figure is due to the covariate for hospital

length of stay. This is the only continuous covariate in the
dataset, with median length of stay equal to 5 days and
interquartile range of 3 to 10 days. We see in Table 1 that

BPSA and PSA give different estimates for γ15 which mod-

els the relationship between length of stay and treatment
assignment. The clusters in Figure 1 are groups of patients
who spent different amounts of time in hospital, but oth-
erwise have the same covariate pattern.

In PSA we control confounding by stratifying on ,

whereas in BPSA we stratify on . Figure 1 shows
that the methods stratify subjects into different groups.
Provided that the models in equations (1) and (2) are cor-
rect, then large sample Bayesian theory tells us that the

parameter estimates for γ calculated from BPSA and PSA
will be asymptotically identical and consistent to the true
parameter value [14]. But for the heart failure data, the
combination of a finite sample size and possible model
misspecification leads to sizeable differences in the pro-
pensity score estimates.

One of the attractive properties of propensity score tech-
niques is that simple diagnostic tools are available to
study the performance of competing propensity score esti-
mates. If we condition on the propensity score, then the
treatment and confounders are independent. The empiri-
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cal distribution of the confounders should be balanced
across treatment groups, and this can be verified by com-
paring the mean and variance of covariates in treatment
versus control. If the distributions are similar then this
indicates that the confounding has been reduced [12]. We
use the notion of covariate balance as a starting point for
evaluating BPSA versus PSA.

Balance with respect to treatment
In this section, we investigate the balancing properties of

 and . Rosenbaum and Rubin [1] showed
that X C|Z, where the symbol "" means that X and C are
conditionally independent given the true propensity score
Z. Stratifying on the propensity score confers balance with
respect to treatment and breaks the association between X
and C. To investigate the performance of competing pro-
pensity score estimates, we adopt an approach similar to
Imai and Van Dyk [15] and fit models of the form

where Ck denotes the kth component of C. Equation (3) is

identical to equation (1) except that it substitutes each of
the covariates in place of the outcome variable Y. To
understand the logic behind fitting such a model to assess

balance, notice that if  is equal to the true propensity

score, then this implies that θ1 = θ2 = θ3= ... = θ21 = 0 in

equation (3) because X  Ck|  for each of k = 1,..., 21. Thus

the extent to which estimates of θ1,..., θ21 depart from zero

speaks to the balancing properties of competing propen-
sity score estimates, and therefore, the effectiveness of

BPSA and PSA in control of confounding. If X  Ck| , then

95% interval estimates for θk should cover zero with prob-

ability 95%.

This reasoning is analogous to investigating balance by
reporting covariate summary statistics within quintiles of
the estimated propensity scores. The original approach of
assessing balance recommended by Rosenbaum and
Rubin [1] proceeds as follows: First, estimate the propen-
sity score via regression of treatment on covariates. Next,
break the population into five separate quintile groups
based the estimated propensity scores. Lastly, check bal-
ance within each quintile group by comparing the distri-
bution of covariates (e.g. age) in treated versus untreated.

If the distributions are similar, then this suggests that the
estimated propensity scores succeed in breaking the asso-
ciation between treatment and confounders. Equation (3)
assesses balance in a similar fashion. We regress Ck on X

and . If the regression coefficient θk is zero, then this

means that X and Ck are not associated after having strati-

fied on . Therefore  is a "good" propensity score esti-
mate because it induces balance with respect to treatment.

To illustrate in the heart failure data, we begin by studying
the crude associations between X and C. This is accom-
plished by fitting the 21 regressions in equation (3) while
forcing ωjk equal to zero. In other words, we individually
regress the components of C on X. The variable for hospi-
tal length of stay, which is continuous, it dichotomized at
the sample median. The results, in the form of point and
95% interval estimates of θ1,..., θ21 are plotted in the first
column of Figure 2 under the heading "Crude analysis".
For example, for C1 which indicates female sex, we esti-
mate θ1 as 0.09 with 95% confidence interval (-0.01,
0.18), and this result is plotted accordingly. Figure 2
reveals that many covariates are associated with of treat-
ment. In particular, treated patients are more likely to be
treated with other heart failure medications.

Next we examine the performance of  as a tool to
reduce confounding. We fit the 21 regressions in equation

(3) by substituting  and compute point and

interval estimates for θ1,..., θ21. The results are given in the

second column of Figure 2 under the heading "PSA". Here

we see the that the estimates  are close to zero

because the same data are used to estimate the propensity
scores and to check balance with respect to X. This illus-
trates the ability of PSA to control confounding. Com-
pared to the crude analysis, Figure 2 reveals that stratifying

on  breaks the association between C and X, and
thus reduces confounding.

Finally, we repeat the above regressions substituting

 in place for  in equation (3). We calculate point

and interval estimates for θ1,..., θ21 and plot the results in

the final column of Figure 2 under the heading "BPSA".

Figure 2 shows that stratifying on  does not yield
the same degree of balance compared to stratifying on

. The point estimates  are generally closer

to zero compared to the crude analysis, indicating that
some of the association between X and C has been
reduced. However, BPSA does not succeed in balancing
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Ẑ

Ẑ Ẑ
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the covariates as effectively as PSA. Therefore, BPSA
appears to be less effective for controlling confounding
than PSA.

The difficulty with this investigation is that it ignores asso-
ciations between the co-variates and outcome variable.

Figure 2 shows that adjusting for  breaks the asso-
ciation between C1,..., C21 and X. But it does not reveal if

these variables are all equally important mortality risk fac-
tors. Recall that a covariate Ck is defined as a confounding

variable if 1) X Ck, 2) Y Ck|X, and further that 3) Ck

is not affected by X or Y [16]. It is useful to consider the
relationship between the covariates and mortality if we
wish to identify confounding bias. If certain components
of C are more strongly associated with Y than others, then
imbalances in Figure 2 may be misleading.

All of the covariates in the heart failure dataset are a priori
known mortality risk factors [17]. But at issue is whether
or not they are associated with mortality conditional on

the estimated propensity score. The purpose of propensity
techniques is to stratify the population into coarse sub-
groups within which treatment effect estimates are uncon-
founded. To get a clear picture of the performance of

 and  as tools to control confounding, we
should explore the associations between C and Y condi-
tional on the estimated propensity scores.

Balance with respect to the outcome
Review: Prognostic scores for control of confounding

Suppose that  denotes a scalar function of C. We

say that there is balance with respect to the outcome if Y

C| , X = 0. This conditional independence assumption
says that, among untreated subjects with X = 0, the distri-

bution of the outcome is determined by  and does not

depend on C. Conceptually, the quantity  can be inter-
preted as a prognostic score in the sense that it is a scalar
summary of the contribution of C to the outcome risk
[18].
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Balance with respect to treatmentFigure 2
Balance with respect to treatment. Each row corresponds to the log odds ratio (95% CI) for the association between a 

covariate and treatment in either an unadjusted analysis, or after having adjusted for  or .

Demographics

Female sex
Age

<65
65−74
75−84
85+

Comorbid conditions
Cerebrovascular dis.
COPD
Hyponatremia
Metastatic disorder
Renal disease
Ventricular arrhythmia
Liver disease
Malignancy
Shock

Hospitalization

Transferred
Stay (10 day intvs.)

Heart failure medications
Digoxin
Diuretics
CCB
ACE inhibitor
ARB
Statin
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Log odds ratio
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Hansen [18] recently introduced the notion of prognostic
scores for control of confounding in observational stud-
ies. For the heart failure data, let Y1 and Y0 denote poten-
tial outcomes for death for a patient in the study. The
quantity Y1 models mortality at the end of follow up for
treated patients and takes value one if the patient dies and
zero otherwise. The quantity Y0 models the corresponding
potential outcome for death assuming the patient is
untreated. Let Y = YX denote the observed potential out-
come.

A prognostic score  is defined as any scalar function of
C with the property that

This equation says that  determines the distribution of
the outcome among untreated subjects. See Hansen [18]
for details.

Prognostic scores are analogous to propensity scores, and
they have close connections to disease risk scores reviewed
by Rosenbaum and Rubin [1], and Stürmer et al. [19].
Stratifying on a prognostic score removes confounding
because it breaks the association between C and the out-
come. Hansen [18] proves that when a prognostic score

 is known, then this implies that we can control con-
founding by including it as a covariate in a regression
model for the outcome. Effect measures calculated from

P(Y |X, ) have a causal interpretation.

The idea of prognostic scores give a theoretical basis for
checking balance with respect to the outcome in the heart

failure data. To compare the performance of  and

 for control of confounding, we can instead verify
there is balance with respect to the outcome, meaning that Y

C| , X = 0. If we see that there is balance with respect to
the outcome, what this means is that the estimated pro-

pensity score  breaks the association between the cov-

ariates and the outcome. Thus by stratifying on , the
covariates C cease to be outcome risk factors and are there-
fore no longer confounders.

A crucial feature of prognostic scores is that they do not

require that X  C| . If X C| , then effect measures

computed from P(Y|X, ) will nonetheless have a causal
interpretation provided that equation (4) holds. In other
words, just because a covariate summary score does not
yield balance with respect to treatment does not imply

that it cannot be used to control confounding. We may

instead have Y  C| , X = 0 in which case  breaks the
association between the confounders and outcome.

Balance with respect to mortality in the heart failure data

To study the ability of  and  to induce bal-
ance with respect to the outcome in the heart failure data,
we employ a similar empirical investigation strategy to the
one described above. We fit models of the form

where Ck denotes the kth component of C, the parameter φk

is a regression intercept, and  is a propensity score esti-
mate. Equation (5) is identical to the outcome regression
model of equation (1) with X = 0, except that we now
include the additional covariate Ck in the model. It

assesses whether or not we should include the covariates
C in the model in addition to the estimated propensity

score. If the estimated propensity score  induces bal-

ance with respect to the outcome, meaning that Y  Ck| ,

X = 0, then we should have ρ1 = ρ2 = ... = ρ21 = 0. We may

once again compute point estimates  and study

the extent to which they depart from zero.

First we calculate the crude associations between Y and
C1,..., C21 among untreated subjects. This is accomplished
by fitting the p = 21 regressions in equation (5) while forc-
ing ωjk = 0. In order words, we regress Y on each of the
individual components of C. The results in the form of
point and 95% interval estimates of ρ1,..., ρ21 are given in
the first column of Figure 3 under the heading "Crude
analysis". We see that many covariates are strong risk fac-
tors for mortality. For example, most of the comorbid
conditions are associated with increased risk of death.

Next we examine the performance of  and 
as tools to reduce confounding. We fit the 21 regressions

in equation (5) substituting either  or  in

place of , and computing the corresponding inferences

for ρ1,..., ρ21. The results are given in the second and third

columns of Figure 3 under the headings "PSA" and
"BPSA" respectively.
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Figure 3 indicates that BPSA produces greater balance with
respect to mortality compared to PSA. The point estimates

of ρ1,..., ρ21 are shifted towards zero. As it stands, the BPSA

model assumes that the propensity scores achieve balance
with respect to the outcome, and the rightmost column of
Figure 3 has diagnostic value in supporting or refuting this
assumption. So for the present data we see that the
assumption is not bad, but not perfect. For example, con-

sider the variable metastatic disorder. In Figure 3, under
the heading "Crude analysis" we see that this variable is
the strongest predictor of mortality in the heart failure
dataset with an estimated log odds ratio of greater than 2.

Stratifying on  breaks much of this association,

while stratifying on  does not.

ˆ ( )Z BPSA

ˆ ( )Z PSA

Balance with respect to the outcomeFigure 3
Balance with respect to the outcome. Each row corresponds to the log odds ratio (95% CI) for the association between 

a covariate and mortality, within treatment groups, in either an unadjusted analysis, or after having adjusted for  or 

.

Demographics

Female sex
Age

<65
65−74
75−84
85+

Comorbid conditions
Cerebrovascular dis.
COPD
Hyponatremia
Metastatic disorder
Renal disease
Ventricular arrhythmia
Liver disease
Malignancy
Shock

Hospitalization

Transferred
Stay (10 day intvs.)

Heart failure medications
Digoxin
Diuretics
CCB
ACE inhibitor
ARB
Statin

−2 −1 0 1 2

Crude analysis

Log odds ratio

−2 −1 0 1 2

PSA

Log odds ratio

−2 −1 0 1 2

BPSA

Log odds ratio

ˆ ( )Z PSA

ˆ ( )Z BPSA

Table 2: Summary statistics for the distribution of log odds ratios depicted in Figure 2 and Figure 3.

Log odds ratios
Median IQR Mean Variance

Balance with respect to treatment
Crude 0.09 0.68 0.09 0.34
PSA 0.02 0.04 0.02 0.02
BPSA 0.20 0.39 0.19 0.12

Balance with respect to outcome
Crude 0.08 0.70 0.25 0.31
PSA 0.24 0.58 0.31 0.24
BPSA 0.15 0.35 0.23 0.12
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To give a clearer comparison of the tradeoffs between
BPSA and PSA, Table 2 gives summary statistics for the dis-
tribution of the log odds ratios from Figures 2 and 3. For
PSA, we see the method gives good balance with respect to

treatment because the  are all close to zero. By compar-

ision, BPSA does a better job of reducing the magnitude of
the associations between the confounders and outcome
that are depicted in Figure 3. For BPSA the sample mean
and median are lower compared to PSA. The associations
between C and Y are weaker overall after adjusting for

. Similarly, the variance  is 0.12 for

BPSA versus 0.24 for PSA. Table 2 does not point deci-
sively towards the superiority of either method. Instead it
describes the merits and tradeoffs of the Bayesian
approach of using the outcome variable to estimate the
propensity scores.

Conclusion
In the population of heart failure patients, confounding
from C is driven by associations between C and Y, as well
as by associations between C and X. By conditioning on

, the Bayesian propensity score method yields
strata where we have roughly Y  C|X, Z. Confounding is
reduced because C are no longer strong mortality risk fac-
tors. By fitting regressions for X and Y simultaneously,
BPSA treats the propensity score as a predictor for the out-
come. The tradeoff is that BPSA is less successful in balanc-
ing the confounders with respect to the treatment
variable.

In contrast, PSA estimates propensity scores from the mar-
ginal model for X given C. The method handles all com-
ponents of C similarly, regardless of the strength of their
association with Y. Figure 2 reveals that PSA balances all
covariates equally well, but the approach may be overly
pessimistic. Some covariates are more important mortal-
ity risk factors than others. It should be emphasized that
neither method is able to reduce confounding from unob-
served covariates.

A limitation of BPSA is that the propensity score estimates
cannot be used to study multiple outcomes. Whereas tra-
ditional propensity scores ignore the outcome variable,
Bayesian propensity scores are outcome specific. Equation
(1) makes use of modelling assumptions for the relation-
ship between Z and the particular outcome Y under inves-
tigation. Indeed the strategy of fitting models for the
treatment and outcome simultaneously goes against the
idea of setting up the study design and analysis without
access to the outcome [20]. Nonetheless, some authors

argue that the performance of propensity score techniques
is improved by making use of the outcome data. If our
objective is to control confounding, then variables that
are weakly associated with the outcome are less important
in propensity score modelling, regardless of whether they
are strong predictors of treatment [6,12,20,21].

From a substantive point of view, one can argue that equa-
tion (1) is not realistic in the sense that we do not expect
to have Y  C|X, Z. Nonetheless, in regression adjustment
for the propensity score, the investigator must choose a
model for the relationship between the outcome and the
propensity score. Popular choices include stratifying on
subclasses of the propensity score or assuming a linear
relationship. The model should be based on genuine
beliefs about the relationship between the propensity
score and the outcome. Further discussion of model based
regression adjustment for the propensity score is given by
Rosenbaum and Rubin [1].
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