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Abstract
When reporting incidence rate estimates for relatively rare health conditions, associated case
counts are often assumed to follow a Poisson distribution. Case counts obtained from large-scale
electronic surveillance systems are often inflated by the presence of false positives, however, and
adjusted case counts based on the results of a validation sample will have variances which are hyper-
Poisson. This paper presents a simple method for constructing interval estimates for incidence
rates based on case counts that are adjusted downward using an estimate of the predictive value
positive of the surveillance case definition.

Introduction
Large-scale surveillance for selected medical or health
conditions often relies on electronic data sources which
provide comprehensive coverage of a given population.
For example, the Centers for Disease Control and Preven-
tion conduct surveillance of brain injuries involving hos-
pitalization or death, based on electronic hospital
discharge and vital statistics data received from twelve to
fifteen states each year [1]. To identify cases, electronic
records are scanned for specified diagnosis codes which
collectively form the operational case definition. The
resulting case counts are subsequently combined with
population data to estimate incidence rates.

As with most surveillance methods, an operational case
definition as described above may admit some records
that do not represent true cases under a strict clinical def-
inition ("false positives") and may also fail to capture
some records representing true cases ("false negatives").
The customary terms reflecting these aspects of an opera-
tional case definition are predictive value positive (PVP)

and sensitivity, defined in the present context as the con-
ditional probabilities [2]:

PVP = Pr{case meets clinical definition | case detected
under operational definition};

sensitivity = Pr{case detected under operational definition
| case meets clinical definition}.

Depending on the extent to which false positives and/or
false negatives are believed to influence the surveillance
process, it may be appropriate to use estimates of PVP
and/or sensitivity to adjust incidence rate estimates
accordingly. It is not generally possible to assess PVP or
sensitivity using electronic surveillance data alone. The
most direct approach to obtaining the additional data
required for estimation of PVP involves manual review of
medical records for a random sample of provisional cases
identified via the operational case definition. Obtaining
the additional data necessary for estimation of sensitivity
may be more labor-intensive, particularly when consider-
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ing an uncommon condition. Without additional "mark-
ers" (apart from the operational case definition) to
narrow the scope of review, it may be necessary to select a
very large sample of general medical records in order to
identify enough true cases to support a stable estimate of
sensitivity.

The methodology described in this paper is oriented to
surveillance of relatively rare health conditions. Because
validation data quantifying the influence of false positives
will typically be easier to obtain than data quantifying the
influence of false negatives in this setting, the develop-
ment concentrates on incidence rate estimates reflecting
adjustments for PVP. This emphasis is not intended to
diminish the potential influence of false negatives; rather,
it reflects the logistical difficulties associated with obtain-
ing data on false negatives as part of ongoing surveillance.
If there is sufficient doubt surrounding the sensitivity of
case ascertainment for any particular surveillance process,
the proposed methodology should be applied with due
caution.

Analysis
For a given surveillance period, it is assumed that case
confirmation data are available for a random sample
(selected without replacement) of provisional cases. Data
obtained through such validation efforts allow estimation
of PVP as well as adjustments to case counts to eliminate
the bias due to false positives. To illustrate, suppose that
for a set period (e.g., one year) of observation:

N = size of the at-risk population covered by the surveil-
lance system;

M = count of provisional cases detected under the opera-
tional case definition;

MT = count of true cases (unknown) among the provi-
sional cases;

MF = count of false positive cases (unknown) among the
provisional cases = M - MT;

S = number of provisional cases sampled for case
confirmation;

CT = count of confirmed true cases among those sampled;

CF = count of cases determined to be false positives among
those sampled = S - CT.

The usual estimate of PVP is given by [3]:

 = CT/S = CT/(CT + CF).

Noting that  is definable only when M > 0 (assuming
also that S > 0) a reasonable estimate of the population of
true cases which eliminates the false positive bias is:

Case counts obtained through comprehensive surveil-
lance may be considered inherently variable even though
they are essentially census-level quantities, in the sense
that a case count can be viewed as representing one obser-
vation from a hypothetically repeatable process [4-7]. For
relatively rare conditions such case counts are often
assumed to follow a Poisson distribution [6,7]. For exam-
ple, suppose that all M provisional cases were to be
reviewed so that the count of true cases MT could be deter-
mined. When reporting the corresponding incidence rate
R = MT/N one might also make use of the variance esti-

mate , based on the assumption that MT

represents one observation from a Poisson process [6,7].
Due to the estimation of PVP, however, the adjusted case

count  cannot be treated in a similar fashion. Depend-
ing on the validation sample and the underlying PVP, for

example, Var( ) can be well in excess of the variance

that would be estimated under the assumption that 
simply follows a Poisson distribution.

The remainder of this paper addresses three aspects of the
problem outlined above: (i) a simple model for the true
and false positive case counts within the defined frame-

work, (ii) selected properties of  under a broadly
applicable validation sample plan, and (iii) the relative
frequency of coverage for interval estimates formulated
using these properties.

A Case Count Model

To evaluate the proposed estimator , a working model
characterizing the process underlying the case counts M,
MT, and MF is needed. For a given at-risk population and
surveillance period it will be assumed that the provisional
case count M is generated according to a Poisson process
with parameter λ. Each provisional case, independent of
other provisional cases, will be assumed to be a true case
with probability equal to the underlying PVP. These
assumptions are reflected in the following mixture model
[8]:

M ~ POI(λ);

MT|M ~ BIN(M, PVP)PVPˆ
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where POI denotes the Poisson distribution and BIN
denotes the binomial distribution. The count of false pos-
itive cases is implicitly given by MF = M - MT. It is well-
established that under this type of decomposition MT and
MF are independent Poisson random variables such that
MT ~ POI(τ) and MF ~ POI(φ), where τ = λ·PVP and φ =
λ·(1-PVP) [9,10]. In this model, the parameter λ repre-
sents the average size of the recurring count of provisional
cases and τ represents the average size of the recurring
count of true cases among the provisional cases. The
quantity 1/PVP can be viewed as the factor by which the
count of true cases is inflated (on average) under the oper-
ational case definition. Finally, the parameters λ, τ and φ
are implicitly dependent on the size of the at-risk popula-
tion N; however, the functional form of this dependency
is not important in the present development.

A Validation Sample Plan
This section examines several important properties of the

estimator  when a fixed fraction of provisional cases
are sampled for confirmation. The properties presented
are derived in Appendix A. Letting 0 < f < 1 denote the
fixed sampling fraction, assume that the sample size S =

 where the quantity f·M is rounded up. Under this

procedure:

E[ ] = τ  (2)

and when f·λ is sufficiently large:

Equality (2) indicates that  is an unbiased estimator
for the mean recurring count of true cases. The first com-
ponent τ on the right-hand side of (3) represents the var-
iance of the true case count MT. The second component
approximates the addition to variance that results from

the case count adjustment based on . Note that for
any given PVP the variance inflation factor is essentially
constant as a result of holding the sampling fraction fixed.

It is noted in passing that when case populations are typ-
ically small, it may be feasible to adopt the practice of con-

firming all provisional cases. Under this approach 
will be equivalent to the true case count MT and it follows

that  ~ POI(τ). Based on familiar properties of the

Poisson distribution [8] it follows that E[ ] = Var( )
= τ and customary analysis methods are applicable.

Application
The remaining objective is the formulation of a simple
method for constructing interval estimates for τ and the
corresponding incidence rate. From (2) it is already

known that  is an unbiased estimator of τ. In Appen-
dix B it is shown that the following estimator is nearly
unbiased for the right-hand side of (3):

Based on (4) an approximate (1-α)·100% confidence
interval (adjusted for the false positive bias) for the recur-
ring case count τ is given by:

where zα/2 represents the appropriate quantile of the
standard normal distribution. The corresponding interval
estimate for the population-based incidence rate is:

where it will be recalled that N is the size of the at-risk
population under surveillance. As an example, suppose
that an interval estimate providing 95% relative frequency
of coverage is desired for the population-based incidence
rate. Table 1 shows the relative frequency with which
interval (5) covers the underlying incidence rate in
repeated Monte Carlo simulations involving various
underlying values of PVP, λ, and f. For several cells f·λ is
small and the coverage is below the nominal (95%) level,
providing an illustration of where the interval estimation
procedure begins to break down. In the remaining table
cells coverage is close to the nominal level.
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Table 1: Estimated Relative Coverage Frequencies of a Nominal 95% Interval with Variance Correction.

PVP = 0.70 PVP = 0.80 PVP = 0.90
f λ = 100 λ = 500 λ = 1000 λ = 100 λ = 500 λ = 1000 λ = 100 λ = 500 λ = 1000

0.10 0.92 0.94 0.95 0.92 0.95 0.95 0.94 0.95 0.95
0.25 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
0.50 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95
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To illustrate the importance of the correction to the vari-
ance, Table 2 shows the relative coverage frequencies
(again based on repeated simulations) if the adjusted case
counts are simply assumed to follow a Poisson distribu-
tion. It is apparent that for smaller sampling fractions,
coverage is well below the nominal level even with the
larger case populations.

Extensions to independent subgroups (e.g., age groups)
and aggregates (e.g., age-adjusted rates) are straightfor-
ward. Provided that subgroup boundaries do not divide
the surveillance population too finely, the error associated
with the interval estimation method described above
should remain minimal.

Conclusion
This paper was motivated by considerations related to
analysis of data from the brain injury surveillance system
mentioned in the introduction. Beginning with surveil-
lance year 2000, a number of participating states identi-
fied provisional cases which were subsequently
determined to be false positives upon in-depth review.
Preliminary estimates of PVP were observed to fall close to
0.9 for some states, suggesting the need for adjusted inci-
dence rate estimates. This issue is also relevant in a
broader context, as a wide range of PVP estimates have
been reported for other surveillance systems [11].

Adjustments to incidence rate estimates to eliminate the
false positive bias are straightforward. However, since the
PVP estimates used to make such downward adjustments
are subject to random variation, the adjusted rates have an
additional source of variation beyond what is usually
assumed. Interval estimates failing to account for this fact
may have coverage frequencies well below the nominal
level. This paper presents a simple method of interval esti-
mation for rates that have been adjusted to remove the
bias due to false positives, applicable in large-scale surveil-
lance settings.

The methodology presented does not address the poten-
tial bias associated with false negatives. In situations
where validation data also support estimation of sensitiv-
ity, surveillance case counts could be further adjusted to

reduce or eliminate such bias. This in turn would intro-
duce another source of variation in the adjusted case
counts and associated rates. Other types of sampling plans
might also be considered. For example, a fixed sample size
s* might be preferred, in which case S = min(s*, M) and

an alternate expression for Var( ) would result. Techni-
cal details aside, the essential point is that data available
from validation samples can have a nontrivial influence
on point and interval estimates, and should be factored
into surveillance statistics whenever feasible.

Appendix A. Moments of the Estimator 
In the sampling procedure considered, the size of the val-
idation sample depends on the provisional case count M.
To make the analysis generic, the sample size will be
denoted by s(M) where s(·) depends on the particular
sampling procedure but is assumed positive whenever M
> 0. The PVP-adjusted case count (1) can then be defined
more precisely as:

where implicitly  = CT/s(M). When M > 0 the distri-
bution of CT conditional on M and MT is hypergeometric
[12], that is, CT|M, MT ~ HYP(s(M), MT, M). It is not diffi-
cult to show that when M > 0 the distribution of CT condi-
tional on M only is binomial, that is, CT|M ~ BIN(s(M),

PVP). It follows that E[ |M] = M·PVP for M ≥ 0. Apply-
ing principles of conditional expectation [8] it is readily

established that  is an unbiased estimator of τ =
λ·PVP:

E[ ] = E[E[ |M]] = E[M·PVP] = λ·PVP.

To determine Var( ) it is convenient to employ the fol-
lowing variance decomposition [8]:

Var( ) = E[Var( |M)] + Var(E[ |M]).

Table 2: Estimated Relative Coverage Frequencies of a Nominal 95% Interval w/o Variance Correction.

PVP = 0.70 PVP = 0.80 PVP = 0.90
f λ = 100 λ = 500 λ = 1000 λ = 100 λ = 500 λ = 1000 λ = 100 λ = 500 λ = 1000

0.10 0.73 0.70 0.68 0.78 0.77 0.76 0.86 0.84 0.84
0.25 0.84 0.85 0.85 0.87 0.88 0.88 0.92 0.91 0.91
0.50 0.91 0.92 0.91 0.92 0.93 0.93 0.93 0.94 0.94
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Since E[ |M] = M·PVP it follows that Var(E[ |M]) =

λ·PVP2. Evaluation of the first component of variance is
more complicated. Defining:

it follows from (A.1) and the fact that CT|M ~ BIN(s(M),
PVP) when M > 0 that:

Var( |M) = PVP·(1-PVP)·g(M).

The task is thus reduced to determining E[g(M)]. When

s(M) =  it holds that g(M) ≤ M/f and hence that

E[g(M)] ≤ E[M/f] = λ/f. Given fixed f the upper bound is a
good approximation provided that λ is sufficiently large,

so that E[g(M)] � λ/f and E[Var( |M)] � PVP·(1-
PVP)·λ/f. Combining variance components and simplify-
ing results in:

Numerical calculation of Var( ) across a range of val-
ues for PVP, λ, and f shows that for f ≥ 0.01 and f·λ ≥ 50,
the relative error of (A.2) is less than 0.01.

Appendix B. An Estimate of Var( )
The following is proposed as an estimator of the right-
hand side of (A.2):

Defining:

it follows from the treatment in Appendix A that the
expected value of the variance estimator (B.1) condi-
tioned on M is:

Then, since  it follows

that:

When s(M) =  it holds that h(M) ≤ 1/f and hence

that E[h(M)] ≤ 1/f. Given fixed f the upper bound is a
good approximation provided that λ is sufficiently large.
Substituting 1/f in place of E[h(M)] results in:

Algebraic simplification results in:

As f·λ becomes large, approximation (A.2) results.
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