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Abstract
The Mantel-Haenszel estimate for the odds ratio (and its logarithm) in stratified case control
studies lacked a generally acceptable variance estimate for many years. The Robins-Breslow-
Greenland estimate has met this need, but standard textbooks still do not provide an explanation
of how it is derived. This article provides an accessible derivation which demonstrates the link
between the Robins-Breslow-Greenland estimate and the familiar Woolf estimate for the variance
of the log odds ratio, and which could easily be included in Masters level courses in epidemiology.
The relationships to the unconditional and conditional maximum likelihood estimates are also
reviewed.

Introduction
The Mantel-Haenszel (MH) estimate for the summary
odds ratio across several 2 × 2 tables, ψMH, was proposed
in 1959 [1]. Over twenty years later the lack of a robust
estimate for its variance was still being noted [2], yet only
a few years afterwards, Robins, Breslow and Greenland
introduced their now generally-accepted variance estima-
tor [3] for the Mantel-Haenszel log-odds ratio (denoted
by the RBG estimate). This replaced estimation of confi-
dence limits based on the unsatisfactory test-based proce-
dure of Miettinen or the computationally intensive
Cornfield type limits which had hitherto been used.

While a useful review of Mantel-Haenszel methods has
been published, including some aspects of the historical
development towards the RBG estimator [4] the formal
derivations by Robins, Breslow & Greenland [3] and Phil-
lips & Holland [5] are not, in the view of this author, eas-

ily comprehended. The former omits steps in the
argument, while the latter appeals to descending factorial
powers. Possibly it is no surprise that even modern text-
books [6,7] merely state the RBG formula without deriv-
ing it.

While other variance estimators exist, some are ad hoc,
such as the application of the cohort study formula to
case-control data suggested by Clayton and Hills [8], only
apply to the large few strata case [9] or are closely related
to the RBG estimator [10]. One rather different exception
is Sato's formula [11] but this procedure gives confidence
limits directly in the odds ratio scale.

It is the intention of this article to present an informal der-
ivation of the RBG estimator as an extension of the
familiar variance formula of Woolf [12], and which could
readily be included in standard textbooks of epidemiol-
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ogy or biostatistics. I will describe this from the perspec-
tive of a case-control study.

Analysis
How does the Mantel-Haenszel estimate arise?
Consider a stratified case-control study for which the ith of
k independent tables is:

Neglecting constants, the unconditional likelihood for the
ith table is:

where in the ith table θi = probability of exposure if a case
and øi = probability of exposure if a control.

The maximum likelihood estimate (MLE) for øi is given by
bi/(bi + di) and if we re-parameterise θi as ψøi/ [ψøi + (1 -
øi)], where ψ is the odds ratio (assumed common to all
tables), the contribution to the overall log likelihood
made by terms involving ψ is:

∑ ai ln {ψøi/[ψøi + (1 - øi)]} + ci ln {1/[ψøi + (1 - øi)]}.

Differentiating with respect to ψ and equating to zero, and
rearranging (noting that ai + ci = n1i)

we obtain:

∑ ai ln {ψøi/[ψøi + (1 - øi)]} + ci ln {1/[ψøi + (1 - øi)]}.

i.e., ∑ {ai - n1iψøi/[ψøi + (1 - øi)]} = 0

i.e., ∑ {[ψaiøi + ai - aiøi - n1iψøi]/[ψøi + (1 - øi)]} = 0.

This must be solved numerically to obtain the MLE for ψ,
but if the denominators do not vary too much across the
tables we merely have to solve:

∑ [ψaiøi + ai - aiøi - n1iψøi] = 0

i.e., ∑ [ψ(ai - n1i)øi + ai (1 - øi)] = 0

or, ∑ ai (1 - øi) = ∑ ψ(n1i - ai)øi

giving, ∑ ai (1 - øi) = ψ ∑ (n1i - ai)øi

and since, ψi = bi/(bi + di) = bi/n0i

This can be used as a first approximation to find the MLE
(if there is only one table then ψ is the unconditional MLE
= ad/bc). Now in stratified case-control studies with a con-
stant ratio, r, of controls to cases, the total number of sub-
jects in each stratum is given by ni = n0i (1 + r), so n0i = ni/
(1 + r). A constant r will be achieved by design if there is
caliper matching; otherwise – as with a post-stratified
analysis – this will be only approximately true. The term
(1 + r) can then be cancelled and we are left with:

The MH estimator is therefore a first approximation to the
unconditional MLE in the large strata case with a constant
control:case ratio across strata. However the MH estimator
actually coincides with the conditional MLE for the matched
pairs design, as outlined, for example on page 164 of Bres-
low & Day [2].

The sensitivity to variation in the øi and constancy of the
control:case ratio is not high, as shown by the data in
Table 1. In a sense this would be expected because for the
most sparse (e.g., pair-matched) data the control:case
ratio will be constant, and while the øi then have maxi-
mum variance – being only 0 and 1, the MH estimate
coincides with the conditional MLE. Conversely, for large
strata the control:case ratio will vary, but the variance of
the øi will be less and the MH estimate will then approxi-
mate the unconditional MLE.

Deriving the variance of the Mantel-Haenszel estimate
Consider again the ith 2 × 2 table, giving the frequencies in
each cell:

For odds ratio , estimated for a single table by the cross-
product ratio aidi/bici, application of the delta method
gives Woolf's logit-based formula [8]:
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 with ni = ai + bi + ci

+ di and, 

The delta method is a widely used procedure in statistics
when an approximation is needed for the variance of a
function of a variable whose variance is known. In this
instance the variable with known variance is a proportion
p, and the function is the logit. The basic delta method for-
mula is: var(y) ≈ (dy/dx)2 var(x) from which, if y = logit(p =
ln[p/(1 - p)],

var(y) ≈ (1/p + 1/(1 - p))2 p(1 - p)/n

= (1/p + 1/(1 - p))1/n

= (1/a + 1/b)

if p = a/n and n = a + b.

Here we have two independent proportions (the propor-
tion of cases and controls exposed) and Woolf's formula
is obtained by estimating the variances of the separate log-
its and adding them.

For k such 2 × 2 tables, each representing a separate stra-
tum, the Mantel-Haenszel pooled estimate of the common
odds ratio ψ is given by:

Hence ψMH is a weighted average of the stratum-specific
odds ratios. The weights approximate the inverse of the

variance of each i if the true value of ψ = 1. Note that the
assumption here of a common odds ratio is not required
for the Mantel-Haenszel test.

To derive the variance, in addition to the approximation
involved in application of the delta rule, an assumption is
also made that each stratum-specific odds ratio is close
enough to the Mantel-Haenszel pooled estimate to permit
terms like aidi/bici to be replaced by ψMH.

We then proceed by obtaining an approximation which

avoids zeros in the formula for var[ln( )]. The motiva-
tion for this can be seen by comparing the weights for ψMH

– which are unaffected by zeros except for deleting such
strata – whereas if Woolf's variances were used, the result
would be indeterminate if cells with zeros were present.

Taking the weights as constant,

Table 1: Simulated case-control data with true odds ratio = 5

Case Control ø Controls:cases

36 97 0.58 4
6 71
42 168

Ca Co
41 79 0.94 2
1 5
42 84

Ca Co
2 1 0.02 2
26 55
28 56

Ca Co
19 25 0.30 3
9 59
28 84

Ca Co
20 41 0.37 4
8 71
28 112

Ca Co
30 21 0.62 1
4 13
34 34

Ca Co
22 26 0.46 2
6 30
28 56

Odds ratio estimates (Stata v7.0):
Mantel-Haenszel 4.38 (95% CI 2.85 to 6.72)
Conditional MLE 4.36 (95% CI 2.85 to 6.67)
Unconditional MLE 4.42 (95% CI 2.88 to 6.78)
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Assuming a common odds ratio ψ, estimated by ψMH, this
can be written as:

Leading to a formula suggested by Hauck [9]:

As mentioned above, a problem with this formula is that
it fails if cell entries are zero. However we can proceed fur-
ther by re-writing the formula as:

On substituting 1/ψMH for (bici/aidi):

Now if the rows of the 2 × 2 table are interchanged, the
variance stays the same. But a similar argument to that
above leads to:

(Note that the new odds ratio

 formed by exchanging

rows is just 1/ψMH.) "The" variance, V, of ln(ψMH) is there-
fore taken to be the mean of the two estimates [13] as
follows:

Let R = ∑ (aidi/ni) and S = ∑ (bici/ni). On substituting into
the two variance formulae:

Next, divide the top and bottom by S2 and move the 
term outside the brackets to obtain:

which is eq. 9 in Phillips & Holland [5].

If we now put

Pi = (ai + di)/ni and Qi = (bi + ci)/ni with Ri = aidi/ni and Si =
bici/ni

then 

which on multiplying out the brackets, rearranging and
noting that R/S = ψMH, gives:

This is the RBG formula!

When there is only one stratum, this reduces to (1/a + 1/b
+ 1/c + 1/d) which is the familiar logit based formula of
Woolf and which approaches 0 as the sample size
increases, assuming a finite true odds ratio. Clearly as the
RBG variance estimate is a finite sum of such estimators
the RBG estimate will also approach 0, for large strata.

The RBG estimator was derived above on the assumption
that the stratum-specific odds ratio estimates could be lib-
erally replaced by the common value, in turn estimated by
ψMH; both assumptions are reasonable with large samples
per stratum. However, the success of the RBG formula
derives from its being applicable also to the sparse data
case.

To see this, consider a matched-pairs case control study.
The capital letters denote the frequency of case-control
pairs.
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In such a study each stratum has only two observations.
The table can be decomposed into four types of
"unmatched" table according to the exposure category of
the case and the control, the frequency of each type being
given by the frequency of the corresponding case-control
pairs:

Only the B such tables with ai = di = 1 and the C such tables
with bi = ci = 1 contribute to the estimate of the odds ratio.
Note that these are disjoint sets of tables.

Under these circumstances: ψMH = B/C which coincides
with the conditional MLE and:

a) the middle term of the RBG formula vanishes because
if bici = 1 then (ai + di) = 0, and if aidi= 1 then (bi+ ci) = 0

b) R = ∑ aidi/ni = B/2 & S = ∑ bici/ni = C/2

c) There are B terms in which aidi (ai + di) = 2 C terms in
which bici (bi + ci) = 2

giving:

V = B/B2 + C/C2 = 1/B + 1/C

This is not only the familiar logit based formula for the
variance of the log odds ratio for matched pairs, but is also
the variance of the conditional maximum likelihood esti-
mate. This is asymptotically consistent from the general
properties of a MLE (and it's easy to see that as the number
of tables increases, V → 0).

In other words, the RBG formula, though derived here
without assuming validity in the sparse case, does in fact
possess this property.

Table 1 shows how closely the conditional maximum like-
lihood estimate, unconditional maximum likelihood esti-
mate, and MH estimate agree, despite varying øi and
control:case ratio.

Conclusion
The Mantel-Haenszel estimate of the odds ratio approxi-
mates the maximum likelihood estimate for large, few
strata and coincides with the conditional maximum like-
lihood estimate for the sparse data (matched pairs) case.

The RBG formula is the estimator of choice for the vari-
ance of the Mantel-Haenszel log-odds-ratio because it
applies both in the large few strata case and in the many
sparse strata case (as in matched pairs analysis), when the
RBG variance estimate actually coincides with the condi-
tional maximum likelihood variance estimate.

Moreover the RBG formula reduces to familiar standard
forms for a single stratum and for matched pairs.

Formal derivation of the RBG formula is tricky but an
informal, accessible derivation is possible as outlined
above, which uses nothing more advanced than the delta
method for approximating a variance.
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