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Abstract
Background: Short-term fluctuations of ambient air pollution have been associated with
exacerbation of cardiovascular disease. A multi-city study was designed to assess the probability of
recurrent hospitalization in a cohort of incident myocardial infarction survivors in five European
cities. The objective of this paper is to discuss the methods for analyzing short-term health effects
in a cohort study based on a case-series.

Methods: Three methods were considered for the analyses of the cohort data: Poisson regression
approach, case-crossover analyses and extended Cox regression analyses. The major challenge of
these analyses is to appropriately consider changes within the cohort over time due to changes in
the underlying risk following a myocardial infarction, slow time trends in risk factors within the
population, dynamic cohort size and seasonal variation.

Results: Poisson regression analyses, case-crossover analyses and Extended Cox regression
analyses gave similar results. Application of smoothing methods showed the capability to
adequately model the complex time trends.

Conclusion: From a practical point of view, Poisson regression analyses are less time-consuming,
and therefore might be used for confounder selection and most of the analyses. However,
replication of the results with Cox models is desirable to assure that the results are independent
of the analytical approach used. In addition, extended Cox regression analyses would allow a joint
estimation of long-term and short-term health effects of time-varying exposures.
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Background
Ambient air pollution has been associated with increases
in acute morbidity and mortality [1]. Patients with under-
lying chronic diseases such as for example diabetes,
ischemic heart disease or heart failure may be at particular
risk for the effects of ambient air pollution. Series of inci-
dent cases may be followed over time to assess the impact
of short-term fluctuation on recurrent disease exacerba-
tion. These studies deviate from the classical cohort as
well as time-series designs. The major statistical challenge
in these studies is the control for changes within the
cohort over time due to changes in the underlying risk fol-
lowing disease inception, slow time trends in risk factors
within population, dynamic cohort size and seasonal var-
iation. The impact of time is particular important when
effects of air pollution are considered, because concentra-
tions of air pollutants vary by season and yearly averages
of pollutants change due to weather, air pollution control
measures and changes in sources.

In order to evaluate the impact of air pollution on patients
with pre-existing diseases, previous hospitalization might
be used to define a potentially susceptible subgroup [2-4].
Poisson regression analyses and case-crossover analyses
have been used to estimate the impact of variations in
daily average air pollution concentrations on the risk of
death in previously hospitalized subgroups of the popula-
tion [5-8].

A multi-city study was designed to follow cohorts of myo-
cardial infarction (MI) survivors in five European cities:
Augsburg, Barcelona, Helsinki, Rome and Stockholm
(HEAPSS-Study). For entry into the cohort, incident first
myocardial infarction cases were considered. The out-
comes considered were re-infarctions and other related re-
hospitalization or death. Ambient air pollution was char-
acterized based on existing air monitoring networks. In
addition, condensation particle counters were set up in
each location to measure the ambient particle number
concentrations (PNC) and to retrospectively estimate
PNC for the entire study period in each location.

This paper describes and compares different statistical
approaches for analyzing short-term air pollution health
effects in a cohort with ongoing recruitment during the
follow-up. Three different methods to analyze the cohort
data were considered: (a) Poisson regression analyses on
the calendar-time axis, (b) case-crossover analyses and (c)
extended Cox regression analyses. As an example the anal-
yses of the association between NO2 and any cardiac
readmission of MI survivors are presented.

Methods
Data collection
Incident myocardial infarction survivors were recruited in
five European cities (Augsburg, Barcelona, Helsinki,
Rome, and Stockholm) during 1992 to 2000 as has been
described elsewhere [9]. Briefly, data sources were AMI
Registries in Augsburg and Barcelona, administrative data-
bases of hospital admissions in Helsinki, Rome and
Stockholm. Enrollment was restricted to residents of the
above cities, aged 35 years or more (35–74 in Augsburg,
35–79 in Barcelona) who had their first AMI (index AMI)
during the recruitment period. Subsequent first cardiac re-
hospitalizations of cohort members within the study area
were recorded from day 29 after the index AMI until the
individual end of follow-up period defined by death,
migration out of the study area, or center specific end of
the study. Readmissions of interest were those with pri-
mary diagnoses of re-infarctions (ICD-9: 410; ICD-10:
i21, i22), acute angina pectoris (ICD-9: 411, 413; ICD-10:
i20–i22, i24, i25), dysrhythmia (ICD-9: 427; i46.0, I46.9,
i47–i49, r00.1, r00.8) and heart failure (ICD-9:428; ICD-
10: i50). Vital status and place of residence at the end of
the follow-up period were ascertained for all cohort mem-
bers.

Statistical analyses
In the study, MI survivors entered the cohort during an
extended period. Once the cohort was complete at least
one year of follow-up without recruitment was added. As
a consequence the following issues had to be considered
in the statistical analyses: (a) the number of subjects at
risk increases over the recruitment period, (b) the risk of
the cohort for a recurrent event on the calendar-time axis
varies based on the proportion of recent MI survivors in
the entire cohort. In the following we refer to calendar
time when we number the dates during follow-up and to
cohort-time when we number the person-time followed.

Poisson regression analyses
Epidemiological studies in air pollution research have
developed techniques using Poisson regression analyses
on the calendar-time axis [10]. In a time series analysis the
daily counts of events are regressed on the daily predictor
variables such as trend, season, weather, and air pollution.
This design assumes that the events are independent and
that the event rate is changes only slowly over time. The
event rate λt at the time point t is modeled as follows

ln(λt) = α + ∑βixit

With λt = yt/Nt being the number of cases y observed at
time t divided by the number of subjects N at risk at time
t. The model can be rewritten as

ln(yt) = ln(Nt) + α + ∑βixit
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In time-series analyses it is sometimes assumed that the
underlying population at risk does not change, and there-
fore the population at risk is not modeled explicitly in the
regression analyses. However, when applied to a cohort
the number of subjects at risk can be explicitly modeled as
given in the equation above. In the cohort setting, when
analyzing the data on the calendar time axis, the trend
captures three different underlying reasons for changes in
the rate of MI over time: (a) long-term underlying trends
in the study base due to life-style changes, changes in
health care or aging of the population, (b) seasonal varia-
tion and (c) changing composition of the cohort. There-
fore, in the cohort setting proper trend control is very
important because it is likely that the effect estimates will
be biased if the trend is not correctly specified. Recent dis-
cussions on modeling in time-series analyses [11,12] have
lead to a broader use of different smoothing techniques in
these analyses and different approaches have been used to
assess the trend over time [13]. We selected three
approaches to model the trend: (a) natural splines, (b)
penalized splines and (c) locally weighted least square
(loess) smoothers.

In a hierarchical approach potential confounders were
selected, including long term trend, season, days of the
week, holidays and meteorology, before adding air pollu-
tion concentration as independent variable. Generalized
additive models were used to allow for non-parametric
functions of the confounders in R (The R Foundation for
Statistical Computing Version 1.8.1) using the package
"mgcv" (version 0.9–6) [14-16]. All models included the
natural logarithm of the number of persons at risk each
day as offset and the daily number of events as outcome
variable. To allow for possible over- or under-dispersion
the quasi-likelihood family was used to estimate the
parameters without specifying the underlying distribution
function. Penalized regression splines were tested for the
continuous confounder variables. The choice of degrees of
freedom was left to the algorithm ("magic") in the "mgcv"
– package that minimized the Generalized Cross Valida-
tion (GCV) criterion. The default of 10 knots as starting
value was adjusted to higher values if necessary due to the
structure of the data. If the smooth function was not sig-
nificant or the estimated degrees of freedom were less
than two, a linear term was tested instead. Decisions for
keeping a covariate in a model were based on judgment
using the p value (<.1), GCV score (the smaller the better),
and the autocorrelation function (ACF) (the nearer to
zero the better).

Trend was included in the model as an obligatory variable
with a penalized spline starting with 6 knots per year to
control for long term trends, seasonality and changes in
the baseline risk. Then current day temperature and the
deviation of the current day temperature from the mean

temperature of lag day 1–3 were tested as penalized
splines. At least one temperature term had to remain in
the model. Thereafter penalized splines of air pressure and
relative humidity, and then dummies for days of the week
and the city specific indicators (holidays, population
decrease) were tested one after the other. Finally the
model was "fine tuned" changing the parameters where
the decision had not been clear and comparing ACF plots
and GCV-score to choose the final covariates to include
for the further analyses.

Sensitivity analyses were performed to compare the results
of the final models with the estimates obtained when
modifying the smoothing-functions used or the con-
founders entered in the Poisson model. Thus the analyses
were repeated using natural cubic splines or loess instead
of the penalized splines, with comparable effective
degrees of freedom to those in the final model with penal-
ized splines. Temperature was replaced by apparent tem-
perature [17] and dew point temperature. Instead of
temperature difference the mean of lag day 1 to 3 was
used. The sensitivity of the results to the choice made
when selecting the confounders was tested by excluding or
including borderline significant confounders that had or
had not entered the model. At the same time, those that
had been included with a linear term were considered
with a smooth function in the sensitivity analyses.

Case-crossover analyses
Case-crossover analyses have been developed to study
transient effects of acute exposures using a case-only
design. This design samples information on exposure sta-
tus from case and referent periods selected from the per-
son-time of the cases. The period of exposure of the cases
is selected as a plausible hazard period immediately pre-
ceding the event. Referent periods are chosen to represent
the exposure distribution in the non-case time periods at
risk.

The referent period selection poses the main challenge to
the case-crossover analyses. Different sampling designs
for referent periods have been proposed to estimate the
effects of air pollution. Exposures that do not change in
association with the case-status, such as air pollution can
be sampled also from person-time after the case occurred
[18]. The stratified approach by Lumley and Levy [19]
controls time trends by design.

Case-crossover analyses were performed as an alternative
to the Poisson regression using conditional logistic regres-
sion models in the S-Plus statistical package version 6.0.
We used the "coxph" function with a strata statement. The
date of each case contributed a hazard period that was
matched with referent periods selected with the stratified
approach (stratifying criteria were year, month and week-
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day). It controls for weekday by design. The same con-
founder variables were included as in the Poisson
regression in order to obtain maximum comparability of
the models. P-Splines were used as smoothing method for
meteorology variables. The effective degrees of freedom of
the smoothers in the Poisson models were translated by
adjusting the smoothing parameter of the P-splines.

Proportional hazard models
An alternative possibility is to model the data as cohort
data using Cox proportional hazard models. Time t now
denotes the time since MI. Extended Cox regression
allows for time-varying covariates in survival analyses
[20]. The hazard h at time t is given as

where X(t) = (X1, X2,....., Xp1, X1(t), X2(t),....., Xp2(t)) and
X1, X2,....., Xp1 are time-invariant variables such as for
example age or gender, and X1(t), X2(t),....., Xp2(t) are
time-varying variables such as weather or air pollution.

The model makes no assumption about the baseline haz-
ard, and therefore is suitable for the analyses proposed
here because the risk for cardiac readmission changes dur-
ing the follow-up of the MI survivors. While Xj(t) is vary-
ing over time, the hazard model provides only one
regression coefficient δj for each time-varying variable in
the model. Thus at time t, there is only one value of the
variables Xj(t) that has an effect on the hazard: the value
being measured at time t. The model therefore assumes a
uniform relative risk for all time points and consequently
does not per se address the possibility of effect modifica-
tion of the air pollution effects by length of follow-up.

The association with daily pollution levels was analyzed
in SAS statistical software (SAS Institute Inc., Cary, NC,
USA, Release 8.02) PROC PHREG using the counting
process style of input. For each subject one record for each
day at risk was created. All models included the same cov-

ariates as the Poisson models, but instead of smooth func-
tions quadratic functions were used. Trend entered as a
linear term. As constant covariates age at entry (in years as
quadratic function), diabetes, hypertension and sex (as
dummy variables) were considered, since they were iden-
tified as predictors of survival in a classical Cox regression.

Results
Data from Rome is used to illustrate the properties of the
data. Rome was selected because it had one of the larger
data sets and had clear evidence for seasonal variation. In
Rome between 1998 and 2000, 7384 subjects survived at
least 28 days after their first MI (Table 1). Between 1998
and 2001, 1916 readmissions for any cardiac disease
defined as readmission for angina pectoris, myocardial
infarction, congestive heart failure or arrhythmia were
observed. Figure 1 describes various aspects of the cohort
data for any cardiac readmission of MI survivors in Rome
displayed on the calendar time-axis. During the follow-
up, the size of the cohort changed daily (figure 1a). In
addition, the composition with respect to the distribution
of length of follow also changes constantly if considered
on the calendar-time axis. Consequently, the number of
cases observed at each time-point of the calendar-time
axis of the follow-up reflects the size of the cohort and its
composition (figure 1b). For each MI survivor, the risk of
hospitalization for any cardiac disease is elevated during
the first half year of follow-up and thereafter stabilizes
(figure 1c). Figure 2 shows the number of subjects fol-
lowed considering the time of follow-up as time-axis. The
number of subjects followed over time steadily decreases
due to the occurrence of an event, loss to follow-up or end
of the observational period (figure 2a). The number of
events (figure 2b) and the incidence rate (figure 2c)
observed is greatest at the beginning of the follow-up due
to the vulnerability of the patients in the time immedi-
ately after the index event. The incidence rate observed
after two or three years of follow-up is low (figure 2c).

Figure 3 shows the smooth time-trend in the Poisson
regression analyses using three different smoothing tech-
niques: (a) penalized splines, (b) natural splines and (c)
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Table 1: Description of the HEAPSS Study population, cardiac readmission as a selected outcome, and NO2 concentrations in 5 
European cities.

City Period of 
Enrollment

Period of 
Follow up

Age 
Range 
(yrs)

Population 
Size

Persons 
followed

Mean 
Age 
(yrs)

Any cardiac 
readmission during 

follow up

Mean NO2 
[μg/m3]

Maximu
m NO2 
[μg/m3]

N λ

Augsburg 1995–1999 1995–2000 35–74 300,902 1560 60.4 286 0.14 49.6 171.8
Barcelona 1992–1995 1992–2000 35–79 893,601 1134 61.9 296 0.09 47.7 148.0
Helsinki 1993–1999 1993–2000 35+ 297,410 4026 69.2 1301 0.45 30.1 173.4
Rome 1998–2000 1998–2001 35+ 1,616,356 7384 67.0 1916 1.34 70.0 140.5
Stockholm 1994–1999 1994–2000 35+ 548,113 7902 73.3 2856 1.23 22.8 81.2
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locally weighted least square smoothers (loess). Here the
time-axis is the calendar-time axis and the functions
shown in figure 3 correspond to the descriptive data in
incidence rates in figure 1c. All functions suggest a
decreased probability to observe hospitalizations due to
any cardiac disease over time overlaid by seasonal varia-
tion. Thereby, they are able to capture the trend compo-
nents discussed above remarkably well. The different
smoothing approaches render quite comparable func-
tions.

The Effect of NO2
Table 2 compares the regression coefficients and standard
errors for the different modeling approaches for a selected
pollutant, (NO2) with the average between current and
previous day concentrations. For the Poisson regression
analyses sensitivity analyses are presented to assess the

sensitivity of the results with respect to the confounder
modeling. The selected models are shown in table 3. It is
important to note that the same degrees of freedom were
not required for exposure response functions in all cities,
but that the number of cases observed determined the
ability to model time-varying confounders.

The different smoothing approaches show comparable air
pollution effect estimates in the Poisson regression analy-
ses. The pooled estimates for NO2 after confounder con-
trol by natural splines or loess functions are somewhat
reduced, but one would still draw the same conclusions.
Removing confounders overall increases the estimates
whereas adding more confounders slightly decreases the
regression coefficients. In the case-crossover analyses, the
estimates are sometimes slightly higher (Augsburg) and

Number of MI survivors followed (a), the number of readmissions to the hospitals due to any cardiac disease dur-ing the followup (b) and incidence rate during the follow-up in Rome (c) as part of the HEAPSS study on the cohort time-axisFigure 2
Number of MI survivors followed (a), the number of 
readmissions to the hospitals due to any cardiac disease dur-
ing the followup (b) and incidence rate during the follow-up 
in Rome (c) as part of the HEAPSS study on the cohort time-
axis.

Number of MI survivors followed (a), the number of readmissions to the hospitals due to any cardiac disease dur-ing the followup (b) and incidence rate during the follow-up in Rome (c) as part of the HEAPSS study on the calendar-time axisFigure 1
Number of MI survivors followed (a), the number of 
readmissions to the hospitals due to any cardiac disease dur-
ing the followup (b) and incidence rate during the follow-up 
in Rome (c) as part of the HEAPSS study on the calendar-
time axis.
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sometimes slightly lower (Barcelona, Helsinki, and
Rome) than the Poisson model estimates. The pooled esti-
mate would suggest smaller regression coefficients and
larger standard errors than Poisson regression analyses.
The results of the extended Cox regression analyses were
consistent with the results of the Poisson regression anal-
yses in Augsburg, Stockholm and Helsinki. Slightly
smaller effect estimates were obtained for Barcelona and
Rome. Overall, the pooled estimates were slightly smaller
than those obtained with Poisson regression analyses, but
would also suggest an association between NO2 and hos-
pital readmissions in MI survivors (figure 4). For extended
Cox regression analyses individual characteristics were
also considered as confounders in the analyses and the
results were nearly identical to those obtained without
consideration of individual characteristics. No strong evi-
dence for heterogeneity of the city-specific effect estimates
was observed and pooled random effect estimates were
identical to the pooled fixed effect estimates (data not
shown).

Discussion
The major challenge of analyzing short-term health effects
of air pollution in a cohort of diseased subjects is to con-
sider simultaneously other time-varying confounders and
the changes in the probability of a recurrent event due to
the individual characteristics. In the case of myocardial
infarction survivors, a major determinant of individual
vulnerability is the time since index event due to the
underlying healing of the heart tissue.

Three different approaches were considered in the analy-
ses. The first one, Poisson regression analysis summarizes

the events on a calendar time-axis. The data in this study
demonstrate an example where the underlying probabil-
ity of observing an event changes with the composition of
the cohort. Therefore, time is not only a measure for slow
trends and seasonal variation, but also represents the
changing fractions of persons at high risk over time.
Smoothing methods were used to attempt to model these
three different components in the time trend. The recent
discussion on smoothing techniques [11,12] was consid-
ered by the selection of three different approaches,
namely natural splines, penalized splines and locally
weight least square smoothers. All three methods gave
quite comparable results and their function is consistent
with a decreased risk of hospital readmission as the cohort
ages and a seasonal variation in hospital readmissions. In
the sensitivity analyses, results were robust to changes in
the confounders selected in the final model.

The case-crossover method was chosen because it was
designed to control for temporal changes by design. More
specifically, the stratified referent period selection
approach considered here controls for trends by design
[19]. However, it has been noted that case-crossover anal-
yses have reduced power compared to Poisson regression
analyses [19]. In this study we observed slightly smaller
effect estimates with larger standard errors. The case of a
cohort with ongoing recruitment and dynamically chang-
ing composition has not been methodologically consid-
ered before. One may assume that the underlying changes
in rates are constant within each stratum [21]. However,
as observed in figure 1, panel C this assumption might be
violated at the beginning of the study. Therefore, the
changing number of subjects at risk might be responsible
for the small differences observed between Poisson regres-
sion analyses, which explicitly consider the varying
number of subjects at risk on a given day, and the case-
crossover analyses. Nevertheless, case-crossover analyses
were considered for these analyses because they quite ele-
gantly allow analyses of subgroups.

Extended Cox regression analyses, on the other hand,
were formulated to consider the present study design in
the correct way. Here, the underlying risk is modeled by a
hazard function h0(t) which is variable over time and con-
siders both the changing hazard due to the recovery from
the incident MI as well as changes in the composition of
the cohort with respect to season and calendar year. The
results are remarkably consistent with those obtained in
the Poisson regression analyses. The practical disadvan-
tage of the method is that the analyses are time-consum-
ing, in particular if these models are used for the selection
of time-varying confounders. Consideration of individual
confounders did not change the association between NO2
and hospital readmissions. In contrast to a recently pub-
lished similar approach, we chose time of follow-up

Exposure response function of the number of hospital readmissions occurring over time based on Possion regres-sion analyses for RomeFigure 3
Exposure response function of the number of hospital 
readmissions occurring over time based on Possion regres-
sion analyses for Rome.
Page 6 of 10
(page number not for citation purposes)



E
pi

de
m

io
lo

gi
c 

P
er

sp
ec

tiv
es

 &
 In

no
va

tio
ns

 2
00

6,
 3

:1
0

ht
tp

://
w

w
w

.e
pi

-p
er

sp
ec

tiv
es

.c
om

/c
on

te
nt

/3
/1

/1
0

Pa
ge

 7
 o

f 1
0

(p
ag

e 
nu

m
be

r n
ot

 fo
r c

ita
tio

n 
pu

rp
os

es
)

Table 2: Comparison of the regression coefficients (beta) and standard errors (se) in the analyses of NO2 concentrations (average of current and previous day) and any cardiac readmission 
applying different statistical models and assessing the sensitivity of the results for confounder selection as listed in table 3.

Augsburg Barcelona Helsinki Rome Stockholm pooled Heterogeneity test

Poisson Regression Analyses beta se beta se beta se beta se beta se beta se p-value

Final Model 0.0119 0.0044 0.0068 0.0044 0.0015 0.0026 0.0041 0.0022 0.0013 0.0032 0.0039 0.0013 0.26

natural splinesa 0.0119 0.0044 0.0066 0.0044 0.0012 0.0026 0.0037 0.0022 0.0012 0.0032 0.0036 0.0013 0.25

loessb 0.0119 0.0044 0.0065 0.0042 0.0015 0.0026 0.0040 0.0021 0.0014 0.0031 0.0038 0.0013 0.27

Removing Confounders 0.0117 0.0041 0.0078 0.0042 0.0019 0.0025 0.0049 0.0022 0.0011 0.0030 0.0044 0.0013 0.19

Adding Confounders 0.0122 0.0045 0.0051 0.0046 0.0024 0.0026 0.0043 0.0022 0.0018 0.0032 0.0041 0.0013 0.37

Apparent Temperaturec 0.0115 0.0044 0.0067 0.0044 0.0012 0.0026 0.0039 0.0022 0.0013 0.0031 0.0037 0.0013 0.28

Case-crossover Analyses

Stratified control selection 0.0144 0.0060 -0.0024 0.0065 0.0031 0.0031 0.0024 0.0026 0.0008 0.0036 0.0029 0.0016 0.32

Cox-Extended Regression

Time-varying confounders 0.0123 0.0043 0.0046 0.0041 0.0013 0.0025 0.0034 0.0021 0.0017 0.0031 0.0035 0.0013 0.24

+ individual confounders 0.0123 0.0043 0.0047 0.0041 0.0011 0.0025 0.0034 0.0021 0.0016 0.0031 0.0034 0.0013 0.23

a) Model as described in table 3, p-splines replaced by natural splines
b) Model as described in table 3, p-splines replaced by loess
c) Final models described in table 3 with p-splines, apparent temperature replaces temperature
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Table 3: Confounders included in the different models with the following abbreviations: S: penalized spline (* k = 30, otherwise k = 10), Poly: Polynomial with order in brackets, L: linear 
term, X: dummies, D: by design.

Trend Temperature Temperature difference Relative humidity Air pressure Weekday Holiday Population decrease

Augsburg

Poisson Regression : Final S - L - - X - -

Poisson Regression : Remove S - - - - - - -

Poisson Regression : Add S S L L - X - -

Case-crossover D - L - - D - -

Extended Cox Regression L - L - - X - -

Barcelona

Poisson Regression : Final S L - - - X - X

Poisson Regression : Remove S - - - - - - X

Poisson Regression : Add S L L - - X - X

Case-crossover D L - - - D - X

Extended Cox Regression L L - - - X - X

Helsinki

Poisson Regression : Final S L L L - X - -

Poisson Regression : Remove S - L L - X - -

Poisson Regression : Add S S S L - X - -

Case-crossover D L L L - D - -

Extended Cox Regression L L L L - X - -

Rome

Poisson Regression : Final S* S - L - X X X

Poisson Regression : Remove S* L - L - X - -

Poisson Regression : Add S* S - S - X X X

Case-crossover D S - L - D X X

Extended Cox Regression L Poly(2) - L - X X X

Stockholm

Poisson Regression : Final S L - S L X - X

Poisson Regression : Remove S - - S L X - X

Poisson Regression : Add S L L S L X - X

Case-crossover D L - S L D - X

Extended Cox Regression L L - Poly(2) L X - X
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instead of subject's age as time axis [22]. While these two
approaches should give similar effect estimates we favor
the model on the follow-up time axis as it more appropri-
ately considers the changing risk levels within the cohort.

A recent review by the American Heart Association has
highlighted the emerging evidence for the biological plau-
sibility between ambient air pollution concentrations in
urban areas and cardiovascular disease exacerbation [23].
However, effect estimates obtained from the general pop-
ulation might underestimate the risk of susceptible sub-
populations, which have also higher baseline risks [24].
Cohort studies assessing the risk of susceptible popula-
tions are highly recommended to provide better estimates
for risk assessment. For example, the age at first MI, socio-
economic status as well as the time since the first MI might
modify the risk of short-term air pollution exposures for
an individual. All three methods might be used to assess
the susceptibility of subgroups. The extended Cox regres-
sion analysis is the only method that would allow the esti-
mation of the main effect of the considered effect
modifier, but computation of the models is time-consum-
ing.

Recent research indicated that spatial and temporal varia-
bility of long-term exposures to ambient particles may be
important factors to consider [25,26]. Furthermore, future
research might consider short-term fluctuations as well as

individualized estimates of long-term exposures to ambi-
ent particles in assessing the health impact of environ-
mental exposures. For these studies, Extended Cox
regression analyses would be the method of choice. In its
most simplistic version, one may estimate jointly the
effect of homes exposed to high traffic together with air
pollution concentrations from a central monitoring side.
However, also more sophisticated approaches of exposure
assessment building on spatio-temporal models such as
for example described by Gulliver and Briggs [27] or Sahu
and colleagues [28] can be foreseen.

Conclusion
Of the three methods considered for the analyses of the
HEAPSS Study, the Poisson regression approach and the
extended Cox regression analyses gave similar results.
Case-crossover analyses might underestimate the strength
of the association in this specific setting, but the differ-
ences were small. Further methodological investigation
may be warranted. From a practical point of view, Poisson
regression analyses are less time-consuming, and there-
fore might be used for confounder selection and most of
the analyses. However, replication of the results with Cox
models is desirable to assure that the results are independ-
ent of the analytical approach used. For the identification
of susceptible subgroups within a cohort of susceptible
populations, case-crossover analyses might be the least
time consuming approach, however, Extended Cox regres-

Effect estimates for the association between NO2 (8 μg/m3) hospital readmissions in MI survivors obtained in Poisson regres-sion analyses and Extended Cox regression analyses of all five cities within the HEAPSS study and the pooled estimates based on a fixed effect modelFigure 4
Effect estimates for the association between NO2 (8 μg/m3) hospital readmissions in MI survivors obtained in Poisson regres-
sion analyses and Extended Cox regression analyses of all five cities within the HEAPSS study and the pooled estimates based 
on a fixed effect model.
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sion analyses would allow a joint estimation of the main
effects and the effect modification.
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