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Abstract

Background: Effectively responding to infectious disease outbreaks requires a well-informed response. Quantitative
methods for analyzing outbreak data and estimating key parameters to characterize the spread of the outbreak,
including the reproductive number and the serial interval, often assume that the data collected is complete. In
reality reporting delays, undetected cases or lack of sensitive and specific tests to diagnose disease lead to
reporting errors in the case counts. Here we provide insight on the impact that such reporting errors might have
on the estimation of these key parameters.

Results: We show that when the proportion of cases reported is changing through the study period, the estimates
of key epidemiological parameters are biased. Using data from the Influenza A/H1N1 outbreak in La Gloria, Mexico,
we provide estimates of these parameters, accounting for possible reporting errors, and show that they can be
biased by as much as 33%, if reporting issues are not accounted for.

Conclusions: Failure to account for missing data can lead to misleading and inaccurate estimates of epidemic
parameters.

Background
The recent outbreak of pandemic strain Influenza A
H1N1 (pH1N1), as well as other infectious disease out-
breaks that have taken place recently illustrate the need
for a rapid public health response and the ability to col-
lect and analyze data efficiently. Unnecessary panic and
disruption to society is more likely to be avoided and
appropriately measured public health responses are
more likely to take place when we have accurate infor-
mation on the virulence and pathogenicity of an emer-
ging disease. For these reasons, quantitative methods
have been developed and continue to be developed to
facilitate the assimilation of emerging data. Important
quantities to estimate include the basic reproductive
number, R0, defined as the average number of secondary
infections created by a single infected individual in an
entirely susceptible population. Numerous methods have
been proposed for the estimation of this quantity,

including deterministic and stochastic compartmental
models [1], branching processes [2], networks [3,4], and,
more recently, a likelihood based method [5,6].
Another parameter of interest is the serial interval, or

the distribution of the interval in time between an infec-
tor and infectee presenting with symptoms [7,8]. It has
been recently shown that this quantity may be time
dependent; for example it can contract during the course
of an epidemic as prevalence of the disease increases [9].
Other quantities of interest include the case fatality rate
[10] and the attack rate in subpopulations, such as age
groups.
Among methods that can be implemented with rela-

tively straightforward data, we typically assume complete
observations. Clearly this assumption is more often than
not violated in practice, especially when dealing with
national or even regional data. For instance the scare
surrounding the anthrax attacks in the fall of 2001 in
the United States led to a large number of individuals
reporting to medical care facilities with suspected
anthrax. Should analysis have focused on suspected
cases in that situation, the magnitude and threat of the
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event would have been greatly exaggerated. During the
recent H1N1 outbreak, the number of suspected cases
of disease likely is composed of several cases that will
not be confirmed, however there are undoubtedly an
even larger number of undetected cases, at least in the
initial stages of the epidemic before the large public
health response was launched and later on as the
growth of the epidemic in many locations rendered it
impossible to continue to track a large portion of the
cases. Further, as the pandemic progressed sick indivi-
duals were cautioned to stay at home, rather than seek
medical attention unless they were acutely ill [11], driv-
ing up the number of unreported cases. Several of the
unreported initial cases could arise from individuals who
are asymptomatic, but still carrying and transmitting the
virus or from others whose illness was not sufficiently
acute to warrant seeking medical attention. To our
knowledge, the issue of the impact of this misspecifica-
tion of the number of cases on the estimation of epi-
demic parameters has not been well-studied.
In what follows we use the likelihood based methodol-

ogy described in [5] to broach the subject and investigate
the impact of underreporting on estimates of both R0

and the serial interval. First we provide an overview of
the methodology we employ and introduce notation to
describe the occurrence of misspecification of cases. Sec-
ond we provide some theoretical results describing the
impact on the estimation of the reproductive number.
We illustrate this through a simulation study. Finally we
investigate the impact that various plausible underreport-
ing schemes would have on estimates obtained from the
recent H1N1 outbreak in La Gloria, Mexico and compare
these to estimates of R0 obtained using the method pro-
posed by Wallinga and Teunis (WT method) [3] and a
simple exponential growth model [12].

Methods
In what follows, we assume that the outbreak is in its
initial phase and that there is an unlimited supply of sus-
ceptible individuals. This implies that all contacts that an
infected individual has are with susceptible individuals.
Additionally, we follow standard methods and assume
homogenous mixing among individuals in the system
being studied. Following [5], we assume that Nt = {N1, ...,
NT} are the number of new cases each day of the epi-
demic, with T being the total number of days of data ana-
lyzed, and that the serial interval is given by p = {p1, ...,
pk} where k is the maximal length of the serial interval
and pj is the probability of an infectee presenting with
symptoms j days after the infector. In practice we can
model the pj with a multinomial distribution or a trun-
cated continuous distribution, such as the Gamma or
Weibull, and estimate the parameters of that distribution
so that the dimensionality of the estimation is

independent of k. Then, we show in [5] that the likeli-
hood of the case counts Nt = {N1, ..., NT} is given by a
thinned Poisson:
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known, estimation proceeds as described in [5]. In rea-
lity we seldom known qt and our intent here is to quan-
tify the effects of ignorance of qt on estimation of R0

and the serial interval.

Estimation of R0
We first consider the case where the serial interval (the
pj) is well known and specified, perhaps from contact
tracing data or historical information. Then the MLE for
R0 in the complete data case is given by
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tor described by [2], as illustrated in [5]. If pj is incor-
rectly specified we know that the estimates of R0 are
impacted [5]. Our interest here is the study of the
impact of missingness therefore we assume that pj is
correctly specified so as to avoid confounding the effect
of these two issues when estimating R0. In the case
where data is incorrectly reported, the estimator for R0

obtained from [2] is
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We consider two simple missingness patterns in this
scenario. First let the missingness be constant, i.e. qt = q
for all t. Second let qt = q1 for t ≤ tc and qt = q2 for t >
tc, where tc might correspond to a public health
announcement or certain number of cases occurring so
as to raise alarm of an epidemic. In these cases it is
likely that q1 < q2. This is the likely scenario initially in
the current H1N1 outbreak, where cases were accumu-
lating for some time before public announcements were
made and increased surveillance was implemented.
Numbers of confirmed cases available early on in the
investigation likely underestimate the true number of
cases dramatically. One can also imagine cases where
q1 > q2. This might occur in instances of overreporting
such as occur in times of panic, for instance following
the scare after the anthrax attacks in 2001 in the US
[13] when more than 20,000 individuals started antibio-
tics until it was determined that they did not have
anthrax. Additionally if all suspected cases of H1N1
were considered early in the epidemic, this could possi-
bly overestimate the true number of cases. Further, as
time has progressed in the H1N1 pandemic, it has
become virtually impossible to ascertain all cases. There-
fore it is likely that reporting initially increased and then
began to decrease again as case counts escalated.
We now provide results to illustrate the impact of

these reporting schemes on the estimation of R0. In the
following scenarios we use the branching process esti-
mator to avoid the complication of the serial interval. In
essence this implies that we assume that the serial inter-
val is one day long in all scenarios or that the data is
grouped into generations, rather than days or some
other time unit. We now compare the two branching

process estimators of the reproductive number, R̂0 and

R0 that make use of the observed numbers of cases

denoted by Mt = {M1, ...., MT} where
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In other words, R̂0 is the naïve estimator that does

not account for reporting issues and R0 is the true esti-

mator. We prove the following two propositions in the
Appendix.

Proposition 1. If qt = q for all values of t, then R̂0

and R0 are equivalent.

Proposition 2. If qt = q1, t ≤ tc and qt = q2, t > tc then

i. If q1 <q2 then R̂ R0 0>  , i.e. we overestimate R0 if

naïve.

ii. If q1 > q2 then R̂ R0 0<  , i.e. we underestimate R0

if naïve.

In summary, if the reporting fraction does not change
through time, then the estimate of R0 is unaffected.
However if the reporting fraction increases (decreases)
then we will overestimate (underestimate) R0 if we
ignore misreporting (labeled naïve, above).

Simulation study
In order to quantify the impact of missing data on the
estimation of R0 and the serial interval, we consider a
simulation study. We use multinomial and gamma dis-
tributed serial intervals. The multinomial represents a
recent estimate for the current Influenza A/H1N1 out-
break in the USA and has a mean, μ of 2.21 days and
variance, s2 of 0.89 with k = 4 [14]. The Gamma dis-
tributed serial interval represents a disease with a mean
of 8 days and variance of 16 days with k set to 20. We
consider three values for R0: 1.5, 2, and 2.5, making six
simulation scenarios.
We then apply four missingness schemes to each data-

set. The first two scenarios assume that the reporting
fraction is constant through time. The second two
schemes have the reporting fraction increase once 30
cases are accumulated. Following are the schemes that
we consider:

1. qt = 0.1, for all t,
2. qt = 0.5, for all t,
3. q1 = 0.05, q2 = 0.5,
4. q1 = 0.4, q2 = 0.9.

Thus we have six sets of complete data and 24 sets of
incomplete data, where each set of data has 10,000
simulated epidemics. We show results for data simulated
with two initial cases (i.e. N0 = 2). Epidemics are simu-
lated to stop when 500 cases are created or they die out.
We only consider those that have at least ten cases for
analysis, since fewer than ten cases would likely not be
detected and considered an epidemic. Thus all simulated
epidemics that die out before ten cases are accumulated,
as well as those which have fewer than ten cases after
the missingness pattern is applied, are not analyzed.
Additionally those simulations with more than k zeroes
in a row after the missingness operation is applied are
not analyzed. This would be comparable to an
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undetectable epidemic since cases are so sparse in time
that they are likely not connected to the same source.
The results of the simulations are given in Figure 1

and 2. Consistent with our theoretical results we observe
that when the reporting fraction is constant, the esti-
mates of R0 are unaffected by a failure to control for
missingness. However if the reporting fraction increases,
then the estimates are smaller when we adjust for the
missingness. We also note that [15] has recently
described a tendency of this method to overestimate the

mean of the serial interval when the serial interval is
short, such as in cases of influenza. Thus part of the
effect seen could be attributed to this phenomena, but
likely will be uniformly so.

Influenza A/H1N1 in La Gloria, Mexico
In [16] the authors report initial findings on the current
H1N1 Influenza pandemic, including results from data
collected on a localized outbreak in La Gloria, Mexico.
Data for this analysis was obtained by surveying 1575

Figure 1 Simulation results for the estimate of the reproductive number. The first boxplot (All) in each frame shows results when all the
data is used. Each subsequent couplet of boxplots first shows the estimates when missingness is correctly accounted for and second, when
missingness is ignored when estimating. The numbers on the × axis denote the missingness scheme applied to the data (see text of manuscript
for a detailed description). For example the first couplet corresponds to constant missingness of 0.05 with the left boxplot giving the results
when missingness is accounted for and the right one for estimates when missingness is ignored. The horizontal line indicates the true value of
the parameter.
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villagers out of 2243 villagers recorded in 2005 [17]. Of
those surveyed, 615 cases were reported. It was later dis-
covered that some of these reported cases were from
seasonal flu. Figure 3 shows the observed data.
In addition to employing our likelihood based method

(hereafter MLE method) to obtain estimates for the
reproductive number and serial interval from the
observed data, we also consider various schemes of
underreporting among both those surveyed (due to
asymptomatic cases or misclassification) and those not
surveyed. Additionally we consider the possibility of
overreporting, given that it was later noted that some of

the cases reported were actually seasonal flu strains [18].
These reporting patterns are informed using the follow-
ing pieces of information.
Attack Rate
Estimates of the attack rate for Influenza vary greatly. In
[19] the authors report an attack rate of 68% among ser-
vicemen during an H1N1 outbreak in Finland during
the winter of 1977-78. Among the 1575 surveyed in La
Gloria an attack rate of 39% (615/1575) was observed.
Finally, a recent report in Peru [20] indicates that 33%
of cases were asymptomatic, meaning that the attack
rate in La Gloria could actually be as high as 58% if we

Figure 2 Simulation results for the estimate of the mean of the serial interval. The first boxplot in each frame shows results when all the
data is used. Each couplet thereafter shows estimates when missingness is correctly accounted for on the left and on the right, when
missingness is ignored in estimation. The numbers on the × axis denote the missingness scheme applied to the data(see text of manuscript for
a detailed description). The horizontal line indicates the true value of the parameter. For several of the gamma distribution scenarios the actual
estimates are extremely large and thus the value of the median is included on the plot where necessary.
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can extrapolate from Peru. The number of missing cases
was calculated as a Poisson random variable with mean
given by AR*(2243*AR-615). We generate 1000 epidemic
sizes for each attack rate.
Constant reporting fraction
We first assume that there is a constant reporting frac-
tion. In other words we attempt to study the impact of
missing information on the individuals that were not
surveyed, assuming that they would have followed the
same trends as those who were surveyed. Using the
simulated epidemic sizes, we superimpose the missed
cases on the observed cases using a multinomial distri-

bution with q N Nt t i
i

T
=

=
∑/

1
. The reporting fractions

for attack rates of 39%, 58%, and 68% are 0.70, 0.53, and
0.40, respectively.
The data simulated from these assumptions are shown

in Figure 3.
Varying reporting fraction
We consider three additional scenarios where we allow the
reporting fraction to vary through time. In this case we let
the reporting fraction follow a logistic function given by:
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where r describes the growth rate of the epidemic and
is calculated at 0.19 in this scenario and q1 and q2 are

Figure 3 Data simulated assuming constant reporting fraction. The black curve shows the original data. The gray curves are the simulated
datasets.
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set to 0.4 and 0.9, respectively and represent the report-
ing fractions at the start and end of the epidemic. Again
the multinomial distribution with qt, as calculated from
the logistic function, is used to assign the missing cases
to days of the epidemic. Figure 4 illustrates the simu-
lated outbreaks.
Overreporting
Finally we consider the possibility that a significant frac-
tion of the cases were not actually pandemic influenza
strain and, in fact, cases were overreported. We still
assume that there was an overall underreporting of
influenza like illness (ILI) according to the schemes
described above. However, we additionally assume that
only a fraction of those cases are indeed of the

pandemic strain. This is done by randomly sampling
from all of the ILI cases using a binomial distribution
with probability 0.25, 0.50 or 0.75, indicating that 25%,
50% or 75% of cases, respectively, are pH1N1.
For the MLE analyses, we calculate the estimates of R0

and the serial interval, assuming the serial interval fol-
lows a multinomial with a maximal length of four days
[14]. We estimate the parameters under two scenarios.
First we consider the first 16 days when the epidemic
curve is in exponential growth and 326 cases had been
observed. We perform estimation assuming an infinite
number of susceptible individuals. Second, we consider
the entire epidemic curve and estimate the effective
reproductive number Rt, by allowing Rt to following a

Figure 4 Simulated data with logistic missingness where the reporting fraction increases with time. The black curve shows the original
data. The1 gray curves are the simulated datasets.
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four parameter logistic distribution, as shown in [6]. We
report the value for R0 from this analysis. The median
of the estimates over the 1000 simulated datasets is
shown for each scenario along with the interquartile
range of estimates obtained.
Additionally we provide estimates obtained on the

same data where all cases are assumed to be pH1N1
using the method described by Wallinga and Teunis [3]
for the entire dataset with either the serial interval esti-
mate obtained from the MLE based method or that
obtained by [16]. R0 is reported as the average Rt over
the first 16 days of the epidemic. We further use a sim-
ple exponential growth model to estimate the exponen-
tial growth parameter and R0, using both serial interval
estimates [12].

Results
Table 1 shows the results from the analysis for the MLE
based method assuming that all the cases are pH1N1.
The results that assume overreporting of pH1N1 are
given in the appendix (Tables 2 and 3). We first con-
sider the results obtained by considering the exponential
growth phase of the epidemic (the first 16 days). With-
out any adjustments for underreporting, we estimate the
basic reproductive number to be 1.41 and the mean of
the serial interval to be 2.09 days with a variance of 1.15
days. When we assume constant missingness, the esti-
mates for the reproductive number and the mean of the
serial interval vary slightly from these estimates with
their IQR containing the original values. Allowing the
reporting fraction to vary according to a logistic func-
tion yields estimates of the reproductive number and

the serial interval that are consistently less than the esti-
mates from the original data.
When all of the data are considered, the results are

similar. Without adjustment for missingness R0 is esti-
mated to be 1.42 and the mean of the serial interval is
1.96 days with a variance of 1.14. Under the constant
missingness scheme the reproductive number estimates
increase with the attack rate (between 1.49 and 1.54), as
well as the mean of the serial interval (2.15-2.25 days).
When the reporting fraction increases through time, the
reproductive number is smaller and decreases as the AR
increases (1.29 to 1.05). The mean of the serial interval
follows a similar pattern ranging between 2.01 for AR =
39% and 1.45 for AR = 68%. The results from the over-
reporting scenarios follow a similar pattern, assuming
that the amount of overreporting is consistent through-
out the epidemic. The results indicate that if reporting
were in fact increasing throughout the epidemic, then
the original results could be overstating the magnitude
of both the reproductive number and the mean of the
serial interval.
Table 4 provides the results using the method of

Wallinga and Teunis [3] and the exponential growth
model to estimate R0. The estimates using the MLE esti-
mator of the serial interval (i.e. with mean of 1.96 for
WT or 2.09 for exponential) are comparable to those
obtained with the MLE method and are 1.48 for the
WT method and 1.40 for the exponential method com-
pared to 1.41 for the MLE method. Those with the Fra-
ser et al [16] estimate (mean SI = 1.91 days) tend to
differ as a direct function of the mean SI (WT R0 =
1.57, exponential R0 = 1.36). Overall the impact of

Table 1 Results for the analysis of the La Gloria data

R0 (IQR) ̂ (IQR) ̂ 2 (IQR)

All Data Original 1.42 1.96 1.14

39% 1.49 (1.44, 2.00) 2.15 (2.04, 2.47) 1.43 (1.27, 1.67)

logistic 1.35 (1.32, 1.41) 2.11 (2.00, 2.22) 1.55 (1.35, 1.75)

58% 1.55 (1.46, 2.03) 2.25 (2.08, 2.49) 1.45 (1.23, 1.67)

logistic 1.13 (1.12, 1.15) 1.80 (1.70, 1.90) 1.32 (1.09, 1.53)

68% 1.54 (1.46, 2.02) 2.24 (2.07, 2.48) 1.44 (1.23, 1.66)

logistic 1.08 (1.07, 1.09) 1.65 (1.57, 1.75) 1.18 (0.92, 1.36)

First 16 days Original 1.41 2.09 1.15

39% 1.42 (1.38, 1.45) 2.11 (1.97, 2.23) 1.12 (0.83, 1.37)

logistic 1.29 (1.26, 1.32) 2.01 (1.86, 2.17) 1.25 (0.88, 1.56)

58% 1.43 (1.38, 1.48) 2.13 (1.96, 2.30) 1.11 (0.78, 1.43)

logistic 1.11 (1.09, 1.12) 1.60 (1.47, 1.73) 0.90 (0.63, 1.24)

68% 1.43 (1.38, 1.48) 2.14 (1.95, 2.31) 1.10 (0.77, 1.42)

logistic 1.05 (1.05, 1.07) 1.45 (1.34, 1.56) 0.74 (0.52, 1.04)

Key: The first block of results consider the entire outbreak and fit the reproductive number using a four parameter logistic function. The second block consider only the
first 16 days where the epidemic is in exponential growth. For each attack rate shown (39%, 58% and 68%) estimates are shown when data missingness is assumed to
be constant and when it is assumed to follow a logistic pattern with the initial reporting fraction at 0.4 increasing to 0.9.
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missing data is the same, regardless of the estimation
method used.

Discussion
We have shown the impact of reporting issues on esti-
mates of the reproductive number and the serial inter-
val. Using a MLE based method, we show that the
estimate of the reproductive number is unaffected if the
reporting fraction is constant through time. However, if
the amount of reporting increases, then we will overesti-
mate the reproductive number if no adjustment is made.
The converse is true should reporting tend to decrease
over time. The simulation results and the work from La
Gloria tend to support this theoretical result. We note
that using other methods of estimation of the reproduc-
tive number (Wallinga and Tuenis [3] and exponential
growth) yield the same trends.
From our simulation work, we notice that the mean of

the serial interval appears to follow the trend of the
reproductive number. For instance, if the reproductive
number is overestimated, then the mean of the serial
interval tends to be too large, as well. Thus missing data
not only impacts the estimate of the reproductive num-
ber, but also the estimation of the serial interval.
We additionally note several caveats to the work pre-

sented here. First, we have assumed homogenous mixing
by not accounting for any variability in the disease para-
meters among subgroups. Clearly disease outbreaks are
dynamic and impacted by multiple factors in the
effected population. We follow the precedent commonly
used and assume homogeneity in the population. It is
not clear how much results might change if this
assumption is relaxed.
Second, we take a frequentist approach and do not

allow for variability in the parameters that are assumed
known [15] recently published work allowing for a Baye-
sian approach to estimation where prior information on
the serial interval can be incorporated into estimation.
The values for the end results are likely to not vary sig-
nificantly, if the prior information is not informative,
there is sufficient data for estimation, or the serial inter-
val is longer than one day. However there are cases
where this prior information can improve the estimates
and might impact the conclusions drawn here. In our
setting we assume that there is no prior information, or
if there is, such as the serial interval being known, that
it is known with certainty. In this case, this assumption
might lead to overestimating of the mean of the serial
interval.

Conclusions
Failure to account for ascertainment of cases can have a
substantial impact on the estimation of key epidemiolo-
gical parameters. If the fraction of cases reported does

Table 2 Results with all of the data

R0 (IQR) ̂ (IQR) ̂ 2 (IQR)

25% pH1N1 Original 1.42 1.96 1.14

39% 1.74 (1.58, 2.14) 2.51 (2.29, 2.73) 1.21 (0.90, 1.49)

logistic 1.44 (1.35, 1.54) 2.38 (2.19, 2.60) 1.32 (1.04, 1.59)

58% 1.76 (1.59, 2.24) 2.47 (2.25, 2.68) 1.31 (0.99, 1.58)

logistic 1.19 (1.14, 1.23) 2.09 (1.91, 2.24) 1.30 (1.02, 1.59)

68% 1.72 (1.55, 2.10) 2.45 (2.24, 2.66) 1.32 (1.01, 1.59)

logistic 1.12 (1.09, 1.15) 1.95 (1.80, 2.12) 1.22 (0.89, 1.54)

50% pH1N1 39% 1.70 (1.53, 2.11) 2.39 (2.18, 2.59) 1.37 (1.08, 1.63)

logistic 1.40 (1.35, 1.46) 2.25 (2.09, 2.41) 1.46 (1.16, 1.70)

58% 1.73 (1.55, 2.17) 2.36 (2.21, 2.55) 1.47 (1.24, 1.68)

logistic 1.15 (1.13, 1.18) 1.93 (1.80, 2.06) 1.33 (1.03, 1.59)

68% 1.62 (1.51, 2.04) 2.34 (2.16, 2.54) 1.38 (1.13, 1.66)

logistic 1.09 (1.07, 1.11) 1.78 (1.66, 1.91) 1.21 (0.91, 1.47)

75% pH1N1 39% 1.61 (1.49 2.05) 2.31 (2.14, 2.51) 1.44 (1.21, 1.68)

logistic 1.38 (1.34, 1.43) 2.18 (2.05, 2.32) 1.52 (1.28, 1.76)

58% 1.92 (1.52, 2.16) 2.32 (2.16, 2.50) 1.51 (1.32, 1.67)

logistic 1.14 (1.12, 1.16) 1.84 (1.73, 1.95) 1.34 (1.07, 1.56)

68% 1.59 (1.48, 2.04) 2.29 (2.12, 2.50) 1.41 (1.18, 1.63)

logistic 1.08 (1.07, 1.10) 1.69 (1.60, 1.80) 1.16 (0.92, 1.42)

Key: The scenarios are as described in the main text of the manuscript and
here are broken down into three cases: 25%, 50% or 75% are actually pH1N1.

Table 3 Results with the first 16 days of data (i.e. the
exponential growth phase)

R0 (IQR) ̂ (IQR) ̂ 2 (IQR)

25% H1N1 Original 1.41 2.09 1.15

39% 1.45 (1.33, 1.59) 2.36 (2.06, 2.66) 0.97 (0.59, 1.42)

logistic 1.34 (1.28, 1.42) 2.28 (2.00, 2.54) 1.17 (0.80, 1.19)

58% 1.45 (1.33, 1.56) 2.26 (1.93, 2.57) 1.04 (0.65, 1.48)

logistic 1.14 (1.11, 1.18) 1.87 (1.68, 2.09) 1.02 (0.73 (1.45)

68% 1.45 (1.36, 1.55) 2.28 (2.04, 2.54) 1.06 (0.66, 1.48)

logistic 1.08 (1.06, 1.11) 1.72 (1.53, 1.92) 0.92 (0.61, 0.70)

50% H1N1 39% 1.46 (1.38, 1.53) 2.27 (2.02, 2.47) 1.03 (0.68, 1.52)

logistic 1.31 (1.27, 1.37) 2.15 (1.91, 2.34) 1.21 (0.80, 1.61)

58% 1.41 (1.33, 1.50) 2.10 (1.80, 2.41) 1.18 (0.74, 1.57)

logistic 1.12 (1.10, 1.15) 1.74 (1.57, 1.90) 0.96 (0.68, 1.40)

68% 1.45 (1.39, 1.52) 2.23 (2.02, 2.42) 1.08 (0.74, 1.51)

logistic 1.07 (1.05, 1.08) 1.57 (1.42, 1.73) 0.85 (0.57, 1.19)

75% H1N1 39% 1.43 (1.38, 1.49) 2.16 (1.97, 2.37) 1.10 (0.75, 1.48)

logistic 1.30 (1.26, 1.34) 2.07 (1.87, 2.25) 1.19 (0.83, 1.56)

58% 1.37 (1.32, 1.42) 1.93 (1.73, 2.18) 1.16 (0.74, 1.53)

logistic 1.11 (1.09, 1.13) 1.65 (1.49, 1.79) 0.93 (0.64, 1.29)

68% 1.44 (1.38, 1.50) 2.17 (1.97, 2.36) 1.03 (0.73, 1.43)

logistic 1.06 (1.05, 1.07) 1.49 (1.37, 1.62) 0.77 (0.51, 1.08)

Key: The scenarios are as described in the main text of the manuscript and
here are broken down into three cases: 25%, 50% or 75% are actually pH1N1.
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not change dramatically throughout the course of the
epidemic, then estimates may not be impacted substan-
tially. When the reporting fraction varies through the
course of an epidemic, as it likely will, estimates can be
substantially impacted. It is important that epidemiolo-
gical studies of infectious disease outbreak seek to
account and better understand the nature of reporting
and make appropriate adjustments in the methods used
to obtain results. We have shown how this can be done
for the MLE method and illustrated its use for recent
Influenza A/H1N1 outbreak data from La Gloria, Mex-
ico. In that case results were off by as much as 34%
when underreporting was not considered.
Data do exist, however, to obtain an idea of the level

of underreporting [13] use information on hospital
admissions in the current H1N1 pandemic to obtain an
estimate of the degree of underreporting. Further [15]
has recently shown that incorporating contact tracing
data into the estimation of the serial interval in a Baye-
sian framework can improve estimates. A similar
approach could be used to improve estimates to account
for suspected levels of misreporting. Clearly the need
exists to use innovative methods to ascertain reporting
issues in data using existing data, or by the collection of
additional data or well-planned studies that can be
rapidly initiated in the event of an outbreak. For
instance, one might consider carefully studying a smaller
population to determine the rate of reporting there. This
could inform the overall rate of reporting. At the least,
estimates should be reported as ranges, rather than as a
single point estimate to indicate plausible values for the
estimate.

APPENDIX
Proof of Proposition 1
It is straightforward to observe from the definition of
R0 that when qt = q, the correct estimator simplifies to

R
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In this case R̂ R0 0=  , indicating that estimation of R0

is not impacted by the missingness in the data.

Proof of Proposition 2
Without loss of generality, we consider the simple
branching process estimator, where p1 = 1 and pj = 0 if
j > 1. Additionally let q2 = rq1, where r > 1. Then the
estimator with missingness taken into consideration
becomes
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Table 4 Results with Wallinga Teunis estimator 3 (R0 is obtained by averaging over the first 16 days)

Wallinga & Teunis R0 Estimate (IQR) Exponential R0 estimate (IQR)

MLE SI estimate Fraser et al SI MLE SI estimate Fraser et al SI Growth rate (r)

Original 1.48 1.57 1.40 1.36 0.19

39% 1.72
(1.60, 1.91)

1.86
(1.70, 2.18)

1.30
(1.26, 1.35)

1.28
(1.23, 1.32)

0.15
(0.12, 0.15)

logistic 1.35
(1.25, 1.37)

1.39
(1.27, 1.53)

1.06
(1.02, 1.11)

1.06
(1.02, 1.10)

0.03
(0.01, 0.05)

58% 1.55
(1.49, 1.63)

1.64
(1.57, 1.73)

1.39
(1.37, 1.41)

1.36
(1.34, 1.38)

0.19
(0.18, 0.20)

logistic 1.19
(1.16, 1.22)

1.22
(1.18, 1.26)

1.08
(1.06, 1.11)

1.08
(1.06, 1.08)

0.04
(0.03, 0.05)

68% 1.59
(1.51, 1.70)

1.68
(1.59, 1.80)

1.38
(1.36, 1.41)

1.35
(1.33, 1.35)

0.18
(0.17, 0.19)

logistic 1.20
(1.16, 1.22)

1.24
(1.19, 1.29)

1.08
(1.06, 1.11)

1.08
(1.05, 1.10)

0.04
(0.03, 0.05)
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Now consider the difference R R0 0− ˆ .
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Results for the standard error of the reproductive number
We now illustrate the impact of reporting issues on the

standard error of the estimators, R̂0 and R0 using the

formula provided in [21] and given by
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Proposition A1. If qt = q < 1 for all values of t, then

SE( R̂0 ) < SE( R0 ), i.e. we underestimate the SE. If qt =

q > 1 then SE( R̂0 ) > SE( R0 ), i.e. we tend to overesti-

mate the standard error.
Proposition A2. If qt = q1, t ≤ tc and qt = q2, t > tc

then

i. If q1 < q2 < 1 then SE R RSE( ) ( )
^

0 0>  .

ii. If q1 > q2 > 1 then SE R RSE( ) ( )
^

0 0<  .

iii. If q2 > q1 > 1 or q2 <q1 < 1 then the results for
the SE are not clearly defined.

Results for overreporting in La Gloria
Following are the results when we consider that only a
fraction of the total cases in La Gloria were actually of
the pH1N1 strain. For this scenario, we simulate 1000
datasets, as before. These datasets are interpreted as
providing the total number of ILI cases. Of these, we
assume that only a proportion is actually of the pan-
demic strain. We allow this to be 0.25, 0.50, or 0.75.
Cases are randomly selected as pH1N1 cases and
included in the analysis. Results are given in Tables 2
and 3.
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