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Abstract
In a series of papers, Robins and colleagues describe inverse probability of treatment weighted
(IPTW) estimation in marginal structural models (MSMs), a method of causal analysis of longitudinal
data based on counterfactual principles. This family of statistical techniques is similar in concept to
weighting of survey data, except that the weights are estimated using study data rather than defined
so as to reflect sampling design and post-stratification to an external population. Several decades
ago Miettinen described an elementary method of causal analysis of case-control data based on
indirect standardization. In this paper we extend the Miettinen approach using ideas closely related
to IPTW estimation in MSMs. The technique is illustrated using data from a case-control study of
oral contraceptives and myocardial infarction.

Introduction
In a series of papers, Robins and colleagues describe
inverse probability of treatment weighted (IPTW) estima-
tion in marginal structural models (MSMs) [1-7], a
method of causal analysis of longitudinal data based on
counterfactual principles. This family of statistical tech-
niques is similar in concept to weighting of survey data,
except that weights are estimated using study data rather
than defined so as to reflect sampling design and post-
stratification to an external population. Several decades
ago Miettinen [8] described an elementary method of
causal analysis of case-control data based on indirect
standardization. In this paper we extend the Miettinen
approach using ideas closely related to IPTW estimation
in MSMs. For simplicity we ignore random error until the
illustrative example.

Population-based incidence case-control study
Consider a population-based case-control study having
an incidence design, that is, one in which only incident
cases are eligible for recruitment. Let E be a dichotomous

variable (0: absent, 1: present) representing the exposure
of interest, and let F be a polychotomous variable (i = 0,1,
..., I), which we later treat as a confounder. At any time
point we may think of the population as being comprised
of exposed and unexposed (sub)populations. Suppose
that recruitment of cases and controls takes place over a
period of T years. We assume that during the period of
recruitment the exposed and unexposed populations are
stationary (i.e., independent of time) with respect to pop-
ulation size and incidence rate (of disease) in each of the
strata of F [9]. Provided that T is not too large, say no more
than two or three years, this assumption is likely to be
approximately satisfied in practice.

Let N1i be the number of people in the ith stratum of the

exposed population who are free of disease (at any time
during the period of recruitment), and let N0i be the cor-

responding number in the ith stratum of the unexposed

population. Let  and . There-
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fore at any time during the period of recruitment, there are
N1 exposed and N0 unexposed people in the population

"at risk" of disease, hence eligible to be controls. Since the
population is stationary, we may assume that controls are
selected at the end of the period of recruitment. This
avoids the inconvenience of having a control selected
early in the study become a case later on. In practice, con-
trols are usually sampled throughout the period of recruit-
ment, with one or more controls enrolled as each case
enters the study. The case triggering this activity and the
associated controls can be thought of as a matched set,
where the matching variable is "time." This method of
subject recruitment is a type of risk set sampling and, in
theory, should be followed by a conditional statistical
analysis [10]. Generally, matching on time is ignored in
the analysis of case-control data, which in practical terms
is not that different from making the stationary popula-
tion assumption.

Let R1i and R0i be the incidence rates (of disease) in the ith
stratum of the exposed and unexposed populations,
respectively. The crude incidence rates are

and

The impact of exposure can be measured using the stand-
ardized morbidity ratio, which has different forms
depending on the choice of standard population [11].
Taking the standard population to be, in turn, the
exposed, unexposed, and total (exposed plus unexposed)
populations, the corresponding standardized morbidity
ratios are

and

We now view the population as an open (dynamic)
cohort that is followed over the period of recruitment,
with onset of disease as the endpoint of interest [12].
Entry into the cohort occurs, for example, as a result of
birth and in-migration, and censoring takes place when,
for instance, there is out-migration and death from a cause
other than the disease of interest.

Simple random sampling
Assume that cases and controls are sampled using simple
random sampling. Let γ and λ be the sampling probabili-
ties for cases and controls, respectively; that is, γ is the pro-
portion of eligible cases enrolled in the study during the
period of recruitment, and λ is the corresponding propor-
tion of controls. We assume that these are also the sam-
pling probabilities within each of the strata of E × F, the
cross-classification of E and F. It follows from the station-
ary population assumption that over the period of recruit-
ment the number of person-years experienced by
individuals in the ith stratum who are exposed and at risk
of disease is N1iT. The corresponding number of (inci-
dent) cases is R1iN1iT, with a1i = γR1iN1iT of them recruited
into the study. Likewise, the number of cases recruited
into the study among individuals in the ith stratum who
are unexposed and at risk of disease is a0i = γR0iN0iT. In
view of remarks made above, b1i = λN1i exposed and b0i =
λN0i unexposed controls will be recruited into the study
from the ith stratum. Table 1 summarizes these observa-
tions.

It follows from Table 1 that

and
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Table 1: Number of cases and controls in ith stratum of F under 
simple random sampling

E Case Control
1 a1i = γR1iN1iT b1i = λN1i
0 a0i = γR0iN0iT b0i = λN0i
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which shows that SMRE, SMRU and SMRT can be estimated
from incidence case-control data [13-15]. Note that
nowhere have we made the rare disease assumption.

We are interested in measuring the causal effect of expo-
sure on the exposed cohort using counterfactual methods
[16-21]. To accomplish this we imagine the group of indi-
viduals in the exposed cohort prior to exposure and con-
sider two scenarios: in the first, exposure subsequently
occurs (as it does in reality); in the second, exposure does
not occur. The second scenario is counterfactual because
it rests on the hypothetical condition that exposure does
not take place, when in fact it does. By contrasting out-
comes arising out of the two scenarios we are able to
define parameters having a causal interpretation. This is
because we are (in theory) comparing two groups of indi-
viduals that are identical except for exposure status. The
crude incidence rate corresponding to the first scenario is
R1. Denote the crude incidence rate for the second sce-
nario by R1

*. Even though the second scenario is counter-
factual, it is possible, provided certain assumptions are
satisfied, to estimate R1

*, as discussed below.

In practice, the unexposed cohort, not the exposed cohort
under the counterfactual condition, is used for compara-
tive purposes. To the extent that the two associated inci-
dence rates, R0 and R1

*, differ, we say that there is
confounding. More precisely, the counterfactual defini-
tion of confounding states that confounding is present if
and only if R0 ≠  R1

*[16-21].

We now make two fundamental assumptions: (1) E does
not "affect" F (in particular, F is not on a causal pathway
between E and the disease), and (2) there is no confound-
ing (according to the counterfactual definition) in the
strata of F. Using arguments analogous to those in [21]
and [22], we have

Since there is no confounding in the strata of F, when con-
founding is present, that is, R0 ≠ R1

*, we attribute it to F and

say that F is a confounder. It follows from (1), (2) and (4)
that

which shows that under the above two assumptions,
SMRE has a causal interpretation.

Following the approach of Sato and Matsuyama [11], we
assign each exposed subject in the ith stratum the weight
1, and each unexposed subject the weight b1i/b0i. We refer
to these weights as the empirical weights. Note that b1i/b0i
is the odds that a control in ith stratum is exposed. From
Table 2, which gives case-control counts after applying
these weights, we see that SMRE can be interpreted as a
weighted odds ratio. Accordingly, in the case-control set-
ting we denote SMRE by sOR and refer to it as the stand-
ardized odds ratio.

Let

and ni = a1i + a0i + b1i + b0i. It is readily demonstrated that
sOR as given by (3) and the Mantel-Haenszel odds ratio
estimate ORMH [23] can be expressed as weighted sums of
the ORi:

These expressions differ only to the extent that the relative
magnitudes of the b0i and ni vary across strata. For case-
control studies in which unexposed controls constitute
the majority of subjects, sOR and ORMH will be close in
value.

It was pointed out by Greenland [15] that ORMH does not
have an epidemiologic interpretation when there is effect
modification. This is because the stratum-specific weights
in (6) do not reflect a recognizable target population.
With sOR the target population is clearly specified
(namely, the exposed population), and so sOR has a
causal interpretation even in the presence of effect modi-

R
R N

N
i ii

1
0 1

1
4* .= ( )∑

SMR
R

R
E = ( )1

1

5
*

OR
a b

a bi
i i

i i
= 1 0

0 1

s

MH

OR

a b
b

OR

a b
b

OR

a b
n

OR

i i

i
i i

i i

i
i

i i

i
i

=











=











∑

∑

∑

0 1

0

0 1

0

0 1
ii

i i

i
i
a b

n
0 1

6

∑
( ).

Table 2: Weighted number of cases and controls under simple 
random sampling
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fication. This is advantageous in a number of settings.
Consider the familiar situation in which, after stratifica-
tion by one or more confounders, the stratum-specific
odds ratio estimates do not exhibit a meaningful pattern,
or the differences in these estimates can be distinguished
on statistical grounds but are of no practical importance.
When this occurs it is desirable to have recourse to a sum-
mary odds ratio estimate, even though effect modification
may be present.

Stratified random sampling
Let G be a polychotomous variable (j = 0, 1, ..., J) and sup-
pose that cases and controls are sampled using stratified
random sampling based on the strata of G. Let γj and λj be
the sampling probabilities for cases and controls in the jth
stratum, respectively. We assume that these are also the
sampling probabilities for the exposed and unexposed
populations in the jth stratum. Corresponding to Tables 1
and 2 we have Tables 3 and 4, from which it follows that

Under stratified random sampling, we assign each
exposed subject in the ijth stratum the (empirical) weight
1/γj, and each unexposed subject the weight b1ij/γjb0ij. As
before, in the case-control context we denote SMRE by
sOR.

MSM-IPTW approach
When there are multiple confounders, the data can be
stratified according to their cross-classification and the

above method used. However, this may lead to cells with
small or zero entries, resulting in instability of estimates.
A statistically more efficient alternative is to adopt the
MSM-IPTW approach and obtain the weights (for con-
trols) from a logistic regression analysis of control data,
where E is the dependent variable and the confounders
(of the E-disease association) are the independent varia-
bles. We refer to these weights as regression weights.

Under simple random sampling, the weight for each
exposed subject is set equal to 1, and the weight for each
unexposed subject is taken to be the fitted odds for that
individual. For stratified random sampling, the logistic
regression analysis of control data must include the strat-
ifying variable. In the jth stratum, the weight for each
exposed subject is set equal to the reciprocal of the sam-
pling probability, and the weight for each unexposed sub-
ject is taken to be the fitted odds for that individual
multiplied by the reciprocal of the sampling probability.

Once the regression weights have been calculated, the
odds ratio for the exposure-disease association is esti-
mated from a weighted logistic regression analysis using
generalized estimating equations (GEE) [24], where E is
the sole independent variable. As remarked by Hernán et
al. [6], it has been shown by Robins [1,2] that for longitu-
dinal data where there are no unmeasured confounders
and where a certain positivity assumption is met, the
weighted GEE approach produces an asymptotically unbi-
ased estimate of the causal parameter. Depending on the
software used for the GEE analysis, it may be necessary to
scale the weights such that their sum across all cases
equals the actual number of cases, and likewise for con-
trols.

Example
Table 5 presents data from an incidence case-control study
of oral contraceptives (OC) and myocardial infarction
(MI) [25]. We are interested in measuring the causal effect
of oral contraceptive use on myocardial infarction in
women taking this medication; that is, the target popula-
tion is women taking oral contraceptives. For the pur-
poses of illustration, we assume that age (AGE) and
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Table 3: Number of cases and controls in ijth stratum of F × G 
under stratified random sampling

E Case Control
1 a1ij = γjR1ijN1ijT b1ij = λjN1ij
0 a0ij = γjR0ijN0ijT b0ij = λjN0ij
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cigarettes (CIG) are sufficient to control confounding and
that there is no misclassification or other source of bias.

We first performed a standard logistic regression analysis,
with MI as the dependent variable and OC, AGE and CIG
as the independent variables. As pointed out by Green-
land and Maldonado [26], there are problems identifying
the target population when using standard logistic regres-
sion analysis. Models were fit using EGRET [27]: statistical
significance of individual terms was determined using the
likelihood ratio test, and the goodness-of-fit statistic G2

was based on the deviance. On purely statistical grounds
the best-fitting model had main effects for OC, AGE and
CIG, along with the interaction term AGE × CIG (G2 =
12.0, df = 8, p = .15). The odds ratio estimate for the OC-
MI association was 2.82 (95% confidence interval [CI]:
1.70,4.68). Of note, the Mantel-Haenszel odds ratio esti-
mate, ORMH= 2.82 (95% CI: 1.70,4.69), was virtually
identical to the logistic regression estimate. The ORMH
confidence interval was based on the variance estimate
described by Robins, Breslow and Greenland [28,29]. The
model with main effects for OC, AGE and CIG, along with
the interaction term OC × CIG also fit the data quite well
(G2 = 17.4, df = 10, p = .068). Given that oral contraceptive
use is the exposure of interest, it is reasonable – on sub-
stantive grounds – to consider this as the "final" model. If
so, because of the OC × CIG interaction, the model no

longer provides a summary estimate of the odds ratio for
the OC-MI association.

Next, we conducted an analysis using the MSM-IPTW
approach. To obtain regression weights, a standard logis-
tic regression analysis of control data was performed, with
OC as the dependent variable, and with AGE and CIG as
the independent variables. The best-fitting model had
only a main effect for AGE (G2= 5.06, df = 6, p = .54). We
then conducted a weighted logistic regression analysis
using generalized estimating equations, with MI as the
dependent variable and OC as the sole independent vari-
able. Following Hernán et al. [4] and Sato and Matsuyama
[11], calculations were performed using the SAS proce-
dure PROC GENMOD [30]. The odds ratio estimate for
the OC-MI association was 3.34 (95% CI: 2.15, 5.21).
Interestingly, when empirical weights were used instead of
regression weights, the odds ratio estimate (which equals
sOR) was 2.83 (95% CI: 1.82,4.41). This is very close to
the odds ratio and confidence interval estimates based on
the standard logistic regression and Mantel-Haenszel
analyses.

Discussion
The counterfactual definition of confounding represents
an important conceptual advance over earlier formula-
tions of confounding. Working within the counterfactual

Table 5: Case-control study of oral contraceptives and myocardial infarction [25]

CIG AGE Total

25–34 35–44 45+

OC Case Control Case Control Case Control Case Control
none 1 0 38 1 12 3 2 4 52

0 1 281 13 318 20 155 34 754

 = 2.44  = 2.03  = 11.63  = 1.71

1–24 1 2 35 1 15 0 1 3 51
0 5 221 32 249 42 96 79 566

 = 2.53  = 0.52  = 0.76  = 0.42

25+ 1 11 22 8 8 3 2 22 32
0 8 112 53 125 31 50 92 287

 = 7.00  = 2.36  = 2.42  = 2.14

Total 1 13 95 10 35 6 5 29 135
0 14 614 98 692 93 301 205 1607

 = 6.00  = 2.02  = 3.88  = 1.68

OC: oral contraceptives
CIG: cigarettes
AGE: age

OR OR OR OR

OR OR OR OR

OR OR OR OR

OR OR OR OR
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framework, Robins and colleagues developed inverse
probability of treatment weighted estimation in marginal
structural models for the analysis of longitudinal data [1-
7]. Although primarily aimed at the problem of time-
dependent confounding, this method is valid when con-
founders are independent of time.

Extending the work of Miettinen [8], in this paper we
present a method of causal analysis of case-control data
that is closely related to IPTW estimation in MSMs. We
consider only case-control studies conducted in a station-
ary population. Provided the time period during which
the study is conducted is not too long, it may be reasona-
ble to regard the population as at least approximately sta-
tionary. Whether strictly valid or not, the stationary
population assumption appears to be made routinely –
usually implicitly – when case-control studies are con-
ducted. An alternative is to match controls to cases on
time of recruitment using risk set sampling [10] and per-
form a conditional data analysis. Under the rare disease
assumption, approximate parameter estimates can then
be obtained using the MSM-IPTW approach [7].
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