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Abstract

Injury-related mortality rate estimates are often analyzed under the assumption that case counts
follow a Poisson distribution. Certain types of injury incidents occasionally involve multiple
fatalities, however, resulting in dependencies between cases that are not reflected in the simple
Poisson model and which can affect even basic statistical analyses. This paper explores the
compound Poisson process model as an alternative, emphasizing adjustments to some commonly
used interval estimators for population-based rates and rate ratios. The adjusted estimators involve
relatively simple closed-form computations, which in the absence of multiple-case incidents reduce
to familiar estimators based on the simpler Poisson model. Summary data from the National
Violent Death Reporting System are referenced in several examples demonstrating application of

the proposed methodology.

Introduction

Injury-related mortality rate estimates are often analyzed
under the assumption that case counts follow a Poisson
distribution. [1-4] Certain types of injury incidents occa-
sionally involve multiple fatalities, however, resulting in
dependencies between cases that are not reflected in the
simple Poisson model and which can affect even elemen-
tary analyses of rates. This paper examines the application
of the compound Poisson process model [5-7] to address
this issue, emphasizing adjustments to some commonly
used interval estimators for rates and rate ratios. Accom-
panying examples demonstrate the proposed adjustments
and provide comparisons of results obtained under the
Poisson and compound Poisson process models.

This paper was motivated by the need for basic statistical
methods applicable to data from the National Violent
Death Reporting System (NVDRS).[8] The NVDRS data

provide a census of violent deaths occurring in the states
covered by the reporting system. Data are collected on
incidents and persons (victims/suspects), and records for
all persons associated with each incident are linked. Two
types of incidents (not mutually exclusive) are of particu-
lar note in the present context: (i) those involving multi-
ple homicides and (ii) those involving homicide followed
by suicide. The NVDRS data for the year 2004 (covering
13 states) indicate that over 4% of homicide-related inci-
dents involved multiple homicides. Correspondingly, at
the individual (person) level approximately 9% of homi-
cides were associated with multiple-homicide incidents.
These data also show that nearly 12% of homicide-suicide
incidents involved multiple (usually two) homicides,
while at the individual level approximately 23% of homi-
cides associated with a homicide-suicide incident were
part of a multiple homicide-suicide incident.
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Analysis

An Analysis Framework Based on the Compound Poisson
Process Model

Analyses of vital statistics data often rely on a conceptual
framework in which case counts, even though based on a
census, are considered inherently variable.[1,2,4,9,10] In
selected National Center for Health Statistics reports, for
example, mortality rate estimates are evaluated for statis-
tical stability by assuming that census-level case counts
(rate numerators) follow a Poisson distribution while at-
risk population estimates (rate denominators) are
assumed constant.[1,2]

The simple Poisson model includes the assumption that
cases occur independently. Cases (fatalities) associated
with multiple-case incidents are not independent, how-
ever, and for this reason such a model does not adequately
characterize the types of incidents described above. The
compound Poisson process model [5-7] provides a closer
conceptual parallel, by incorporating a two-level counting
process. Applying this model to the NVDRS data, incident
counts represent the first level and are assumed to follow
a simple Poisson distribution. The counts of cases associ-
ated with each incident represent the second level. These
incident-specific case counts are assumed to follow a com-
mon (discrete) probability distribution of unspecified
form. Incident-specific case counts are also assumed to be
(i) independent across incidents and (ii) independent of
the count of incidents. [5-7]

As an illustration of the basic aspects of the compound
Poisson process model, suppose that occurrences of a spe-
cific type of incident are consistent with a Poisson process
having person-year rate parameter A. Letting person-years
at risk be denoted by P, it follows that the incident count
N has a Poisson distribution with (unknown) mean AP,
denoted by N ~ Poisson(AP). At the next level, suppose
that the incident-specific case counts C,, C,, C;, ..., Cy

have a common underlying distribution with mean p and
variance o2 (both generally unknown) and satisfy the
independence assumptions specified above. The total case

N .
count C = zk:l Cy then conforms to a compound Pois-

son process model, with underlying mean E [C] = AP x p
and underlying variance Var(C) = AP x (u2 + 62). [5-7]

Effectively, the compound Poisson process model reduces
to the simple Poisson model in analyses where multiple-
case incidents do not occur.[7] In such situations C, = 1
for every incident, so that the total case count C is equal to
the incident count N, with the latter variable assumed to
follow a simple Poisson distribution. In this way, the
framework based on the compound Poisson process
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model encompasses the more customary analysis frame-
work based on the simple Poisson model.

Rate Estimators and Variances

Using terms defined above, the typical estimate of the
population-based case rate per 100,000 person-years is
provided by R = C/P x 100,000. Under the compound
Poisson process model E [R] = E [C]/P x 100,000 = A x pn
x 100,000. Since this latter quantity also corresponds to
the underlying case rate per 100,000 person-years, it fol-
lows that R is an unbiased estimator.

The variance of the rate estimator is Var(R) = Var(C)/P2 x
100,0002. An unbiased estimate of Var(C) under the com-
pound Poisson process model is conveniently provided

by Var(C) =ZE:1 Ci (see Appendix A). Substituting
2?:1 Cﬁ in place of Var(C) provides the unbiased vari-

ance estimate Var(R) = 2?:1 CZ /P2 x 100,0002.

Confidence Intervals for Rates

Confidence intervals for rates and rate ratios frequently
involve an initial logarithmic transformation to the point
estimate. Applying this transformation to the rate estima-
tor R, the "delta" method [11-14] suggests the following
general form (not model-dependent) for an approximate
95% confidence interval for the underlying rate [15]:

[exp{ln(R)—l.%x %}, exp{ln(R)+1496x %}]4 (1)

When Ris based on a total case count C that is assumed to
follow a simple Poisson distribution, interval (1) simpli-
fies to the more recognizable form [10,16,17]:

(exp{ln(R)—lﬂGX\/g}, exp{ln(R)+1.96><\/g}J, (1a)

Alternatively, when the total case count C is assumed to
conform to a compound Poisson process model, substitu-
tion of the earlier expression for Var(R) into (1) provides
the following adjustment to interval (1a) to account for
multiple-case incidents:

N 2 N -2
[exp{ln(R)l.%x,zk(;zlck}, exp{ln(R)+1A96>< ch_lek}J (1b)

where C,, C,, C;,
counts defined previously. By inspection of the square
root terms in (1a) and (1b), it can be seen that the esti-
mated variance of In(R) is increased by the factor

..., Cy are the incident-specific case
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ZI]:T:lCﬁ /C under the compound Poisson process

model. When no multiple-case incidents appear in the
. N -2 N =

data it follows that 2 o1 Ck = 2k=1 Cy =C (because C,

= 1 for each incident covered), whereupon interval (1b)
reduces to interval (1a) and the distinction between mod-
els becomes academic.

Example |

This example briefly demonstrates the calculations
required for intervals (1a) and (1b), referencing NVDRS
summary data for the year 2004. These data (for 13 states)
show that there were 25 homicide-suicide incidents
involving homicide victims under 21 years of age. The left
half of Table 1 provides a summary of the incident-spe-
cific homicide counts associated with these incidents. For
example, the first summary line represents 19 separate
incidents, each involving one homicide victim under 21
years old. The right half of the table shows the calculation
of the sums appearing in intervals (1a) and (1b).

The totals at the bottom of the right half of Table 1 are
used to calculate the unadjusted and adjusted confidence
interval estimates for the population-based rate. There
were approximately 19.8 million persons under 21 years
of age in the states covered by NVDRS for 2004.[18] Since
the reporting period covered one year this translates to
approximately 19.8 million person-years at risk for this
age group, so the estimated rate per 100,000 person-years
is:

R = (31/19.8M) x 100,000 ~ 0.157.

Recalling the earlier shorthand notation C= 2;1 Ck

the unadjusted 95% confidence interval for the rate is
obtained by substituting R~ 0.157 and C = 31 into (1a):

{exp{ln(o.157)—l.96><\/z}, exp{ln(0.157)+ 1.96><\/1}J

resulting in the interval estimate (0.110, 0.223).

The 95% confidence interval adjusted for multiple-case
incidents is obtained by substituting the values R~ 0.157,

C=31,and Y C} =43into (1b):

(exp{ln(o.157)—1.96>< /;132} exp{ln(o-157)+1-96X ;132}]

http://www.epi-perspectives.com/content/4/1/1

The resulting interval estimate (0.104, 0.238) is approxi-
mately 19% wider than the unadjusted interval estimate.

Example 2

The coverage properties of the unadjusted and adjusted
confidence intervals (1a) and (1b) were compared using
stochastic simulation. Assuming that the Poisson distribu-
tion is an appropriate model for incident counts, the rele-
vant simulation inputs are the underlying mean incident
count AP and the underlying distribution of cases within
incidents. The ranges of the simulation input values were
selected in part to cover the observed values from Example
1.

The underlying mean incident count AP can be varied
either through A (the incident occurrence rate per person-
year) or through P (person-years at risk) and for purposes
of simulation the choice of which to vary is arbitrary.
Therefore, P was held constant at 20 million person-years
while A was varied across the values 0.050 x 103, 0.125 x
10-3, 0.250 x 103, and 0.500 x 10-5. These values corre-
spond to underlying mean incident counts of AP = 10, 25,
50, 100 for the hypothetical period of observation.

Each value of the incident occurrence rate A was consid-
ered in combination with five different within-incident
case count distributions. The within-incident case count
distributions are denoted by quadruples (p;, P, Pss P4)
indicating the probabilities that an incident involves 1, 2,
3, or 4 cases of interest, respectively. The first within-inci-
dent distribution (0.76, 0.24, 0.00, 0.00) matches the
observed distribution from Example 1 in which each inci-
dent involved one or two cases. The second within-inci-
dent distribution (0.95, 0.05, 0.00, 0.00) reflects a
comparatively small fraction of incidents involving multi-
ple cases. The remaining three distributions reflect a suc-
cessively increasing fraction of incidents involving
multiple cases as well as larger numbers of cases. Consist-
ent with earlier notation, p and o2 denote the mean and
variance for each within-incident case count distribution.

The simulation was programmed using the Statistical
Analysis System (SAS).[19] One-hundred thousand simu-
lation replicates were generated for each combination of
simulation inputs. Each replicate involved simulation of
an incident count according to a Poisson distribution hav-
ing the indicated mean AP, followed by simulation of inci-
dent-specific case counts according to the indicated
discrete distribution. The 95% confidence intervals (1a)
and (1b) were calculated for each simulation replicate,
and for each interval estimate it was noted whether the
underlying case rate per 100,000 person-years (A x p x
100,000) fell between the interval endpoints. The relative
frequencies with which intervals (1a) and (1b) covered
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Table I: NVDRS Summary Data and Calculations for a Rate Confidence Interval.

Incident Summary Data

Calculation of Sums

Incident Count Homicides <21 Years of Age

19 |
6 2

25

the true case rate for the various combinations of simula-
tion inputs are displayed in Tables 2 and 3, respectively.

The results in Table 2 indicate that as incidents involving
multiple cases and larger numbers of cases become more
frequent, coverage for the unadjusted interval (1a) drops
well below the nominal 95% level. In the first line of the
table (paralleling the NVDRS data from Example 1) cover-
age falls to about 90%. In the second line, where multiple-
case incidents are less common, the difference between
effective and nominal coverage is minimal. In the fifth
line of the table, representing the most extreme departure
from one case per incident, coverage is reduced to just
over 85%. In contrast, the results in Table 3 show that cov-
erage for adjusted interval (1b) conforms closely to the
nominal 95% level under all of the simulation parameter
combinations considered.

Further simulation results (not shown) indicate that the
performance of interval (1b) is sensitive to extra-Poisson
variability in the incident counts. Although more general
models compensating for such extra-Poisson variability
might be considered, the primary interest here is the effect
of multiple-case incidents. Moreover, multiple-case inci-
dents are unmistakable when represented in the data,
whereas extra-Poisson variability in the incident counts
may be more difficult to detect. The remaining presenta-
tion therefore continues to rely on the compound Poisson
process model, which adequately addresses the issue of
multiple-case incidents and results in tractable computa-
tional expressions.

Confidence Intervals for Rate Ratios

The analysis is somewhat more complicated when consid-
ering rate ratios as opposed to individual rates. Letting R,
and R, denote rate estimators for two demographic sub-
groups (for example, persons under 21 years of age and
persons 21 years of age or older) the estimated rate ratio
is defined in the usual way as RR = R, /Rg,. Applying a log-
arithmic transformation to this ratio, the delta method
[11-14] suggests the following general form for an approx-
imate 95% confidence interval for the underlying rate
ratio:

£C, £C2
19x1=19 9% 12=19
6%x2=12 6x22=24
31 43

[exp{ln(RR)— 1.96><\/VM(§51) L YARsy) ) COVRs1 Rsy) }
RE

§1 R3, Rg1 xRz
ar(Rg;)  Var(R 5v(Rg; Rg
explIn(RR) +1.96x | YA Rst) | VarRsy) _, CoviRsiRsp) | | (2)
2 2 Rg; X R,
R RS, s1%XRga

Let Cg; and Cg, denote the case counts used to calculate
Rg; and Ry, respectively. These counts (and hence Rg; and
Rg,) are often considered independent, and the covariance
term in (2) thus omitted. Assuming that these counts fol-
low a simple Poisson distribution, interval (2) reduces to
the more customary interval [10,16,20] for the underlying
rate ratio:

1 1 1 1
In(RR)-1.96X |—+— 1, In(RR) +1.96X [— + — . 2
[exp{n( 196 [e b el 100 [ CSZ}} (20)

The adjustment to interval (2a) to account for multiple-
case incidents must address dependencies not only within
the two subgroups, but also dependencies extending
across the subgroups. The latter type of dependency
occurs when some multiple-case incidents include cases
in both subgroups, and in such instances the covariance
term in interval (2) cannot simply be omitted. Let Cg; .,
CSI -2 CSl <37

counts (some possibly zero) for subgroup 1 (so

N .
Cq = 2k=1631-k ). Similarly, let Cg,.;, Cgy.0, Coy.5/ oo

..., Cg;.n denote the incident-specific case

Cg, .y denote the incident-specific case counts for sub-

group 2 (so Cg, = Zszl Csy )- With Pg,; and Pg, denot-

ing person-years at risk for the respective subgroups, an
unbiased estimate of Cov(Rg;, Rg,) under the compound

Poisson process model is given by 25:1( Cs1.k XCso.k )/

(Pg; x Pg,) x 100,0002 (see Appendix B). Substituting the
appropriate variance and covariance estimates into (2)
and simplifying provides the adjustment to interval (2a)
to reflect both within-group and cross-group dependen-
cies:
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Table 2: Estimated Coverage for Unadjusted (Poisson) 95% Confidence Interval (1a).

Incident Occurrence Rate per 100,000 Person-years (A % 105)

0.050 0.125 0.250 0.500
Within-Incident Case Count Distribution
Relative Frequency of Coverage
(P1» P2 P3 P4) i o?

(0.76, 0.24, 0.00, 0.00) 1.24 0.1824 0912 0.908 0.906 0.899
(0.95, 0.05, 0.00, 0.00) 1.05 0.0475 0.944 0.941 0.937 0.944
(0.85, 0.10, 0.05, 0.00) 1.20 0.2600 0914 0.896 0.908 0.900
(0.80, 0.15, 0.03, 0.02) 1.27 0.3771 0.891 0.884 0.892 0.891
(0.70, 0.20, 0.07, 0.03) 1.43 0.5651 0.867 0.864 0.864 0.854

2 c?, Cs1 % Cs2

N -2 N ~2 N ~ ~
C§ C3 Cg1.x X Cg.
[exp{ln(RR)—l.96><\/2‘k 51k+2k:1 52](—2><2'k:1( Stk SZk)},
C

N 2 N 2 N
2 C Copx X Csa.
exp{ln(RR)+l.96><\/zk:] Sk, B Gk, B (G 5“‘)}. (2b)
C

% Cé Cs1xCsa

As with the adjusted interval for a rate, when no multiple-
case incidents are represented in the data it follows that

N N
21(:1 C§1_k =Cgq1, zk:l ngik = Cgy, all cross-products

Cg1 .k x Cg,.i are zero, and the adjusted interval (2b)
reduces to the unadjusted interval (2a).

Example 3

The calculations required for intervals (2a) and (2b) are
illustrated using NVDRS summary data for the year 2004.
These data indicate a total of 144 incidents (13 states)
involving homicide followed by suicide. Of these, 127
incidents involved a single homicide, 15 involved a dou-
ble homicide, one involved a triple homicide, and one
involved a quadruple homicide, for a total of 164 homi-
cides.[21] Expanding on Example 1, Table 4 provides a
summary of the incident-specific homicide counts associ-
ated with all 144 homicide-suicide incidents, with homi-

cides classified into the two demographic subgroups
described earlier (<21 years of age, 21+ years of age).

The left half of Table 4 contains summary data for the
homicide-suicide incidents. The right half of the table
shows the calculation of the sums appearing in intervals
(2a) and (2b). For example, the third summary line repre-
sents four separate incidents, each with two homicides in
the first age group and none in the second age group.
Since Cg; . = 2 and Cg, . = 0 for each of the four incidents

represented by this line, it adds 4 x 2 = 8 to the sum

2?:1 Cgpx and 4 x 22=16 to the sum ZE:l Cgl,k .

The totals at the bottom of the right half of Table 4 are
used to calculate the unadjusted and adjusted confidence
interval estimates for the rate ratio. In the states covered
by NVDRS for 2004, the size of the population for the first
age group was approximately 19.8 million, and approxi-
mately 48.9 million for the second age group.[18] Since
the reporting period covered one year, these population
figures approximate person-years at risk in the respective
age groups, so the estimated rate ratio is:

Table 3: Estimated Coverage for Adjusted (Compound Poisson) 95% Confidence Interval (1b).

Incident Occurrence Rate per 100,000 Person-years (A % 105)

0.050 0.125 0.250 0.500
Within-Incident Case Count Distribution
Relative Frequency of Coverage
(P1> P2 P3: Pa) K o?
(0.76, 0.24, 0.00, 0.00) 1.24 0.1824 0.948 0.953 0.950 0.950
(0.95, 0.05, 0.00, 0.00) 1.05 0.0475 0.958 0.950 0.952 0.951
(0.85, 0.10, 0.05, 0.00) 1.20 0.2600 0.955 0.947 0.949 0.949
(0.80, 0.15, 0.03, 0.02) 1.27 0.3771 0.945 0.948 0.949 0.949
(0.70, 0.20, 0.07, 0.03) 1.43 0.5651 0.942 0.948 0.948 0.948
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Table 4: NVDRS Summary Data and Calculations for a Rate Ratio Confidence Interval.

Incident Summary Data

Calculation of Sums

Incident Homicides in Age <21 Age 21+ 2Cs 2G4 2 2Csyx 2Csy 2 2Cs % Cope
Count Incident
14 | | 0 14 14
113 | 0 | 113 113
4 2 2 0 8 16
5 2 | | 5 5 5 5 5
6 2 0 2 12 24
| 3 2 | 2 4 | | 2
| 4 2 2 2 4 2 4 4
144 31 43 133 147 I

RR = Rg,/Rg, = (31/19.8M)/(133/48.9M) = (31/133) x
(48.9/19.8) = 0.576.

Again recalling the shorthand notation Cg; = ZL Cs1.x

and Cg; = 2521 Cso. » the unadjusted 95% confidence

interval for the rate ratio is obtained by substituting RR »
0.576 and the values Cg; = 31 and Cg, = 133 into (2a):

exp{ln(0.576)—1.96>< /l+i}, exp{ln(0.576)+1_96>< L+L}
31 133 31 133

resulting in the interval estimate (0.390, 0.852).

To calculate the adjusted 95% confidence interval, the val-

ues RR ~ 0.576, Cg, = 31, 3\ Cdy = 43, Cg, = 133,

N N
2k=1cé2~k = 147, and zkzl(CSl,k XCSZ~k) = 11 are

substituted into expression (2b):

43 147 11
exp4In(0.576)-1.96X | —+ —— - 2X——— ¢,
312 1332 31x133
4 14 11
exp1 In(0.576) +1.96x —3+—7—2x7
312 1332 31x133

resulting in the interval estimate (0.375, 0.884).

The adjusted interval estimate is approximately 10%
wider than the unadjusted estimate. In this example, the
influence of the increased variance estimates for the rate
ratio components (the numerator and denominator rate
estimates) is partially offset by the covariance term.

When cases associated with multiple-case incidents are
concentrated mostly within subgroups the covariance

term in adjusted interval (2b) will be relatively small and
this interval will generally be wider than unadjusted inter-
val (2a). For example, if the subgroups represent separate
geographic regions, multiple-case incidents will rarely
involve both subgroups and the covariance term will be
negligible. Conversely, in situations where multiple-case
incidents frequently involve both subgroups, the covari-
ance term in (2b) offsets the influence of cases concen-
trated within subgroups (as in the previous
computational example). In some instances the covari-
ance term can dominate to the extent that the adjusted
interval is narrower than the unadjusted interval.

The performance of intervals (2a) and (2b) under the
types of conditions just described was evaluated using sto-
chastic simulation, assuming various combinations of the
incident occurrence rate, the underlying rate ratio, and the
within-incident case count distribution (p;, p,, Ps Pa)-
The initial set of simulations randomly assigned all cases
associated with any given multiple-case incident to one of
the two subgroups (according to probabilities consistent
with the assumed rate ratio) thereby reducing the covari-
ance term in interval (2b) to zero. Provided that the
underlying mean incident count for each subgroup was
not less than 10, the estimated coverage for adjusted inter-
val (2b) was within 1% of the nominal level (95%) for all
simulation inputs considered. By contrast, the estimated
coverage for unadjusted interval (2a) dropped to about
85% when assuming the most extreme within-incident
case count distribution (0.70, 0.20, 0.07, 0.03) from
Example 2.

When modified to include multiple-case incidents simul-
taneously involving both subgroups, the simulations
again indicated an effective coverage for adjusted interval
(2b) close to the nominal level for the inputs considered.
However, the cross-group dependencies introduced by
this simple change also resulted in an adjusted interval
with average width about the same as that of the unad-
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justed interval. Consequently, the estimated coverage of
unadjusted interval (2a) was also close to the nominal
level.

Confidence Intervals for Age-Standardized Rates and Rate
Ratios

The methods considered thus far pertain to crude rates
(and ratios of crude rates) estimated using a single case
count (numerator) and a single value for person-years at
risk (denominator). The treatment of age-standardized
rates and ratios of age-standardized rates follows from
straightforward extensions of results already presented.

To illustrate the proposed extension for age-standardized
rates, assume that there are M age groups into which the
data are partitioned and denote the corresponding age-

group rate estimators by Rg;, Ry, Rasr oo Roye Let ogy,

Ogy Mgz - Ogy denote corresponding age-group popu-

lation fractions (assumed fixed) in the referent (standard)
population, such that Z;Vl:le( = 1. Applying the direct

method of standardization [14] the age-standardized rate
estimator is given by:

M
Ra1 = Zzzla)@ XRGZ'

The usual formula for the variance of a weighted sum pro-
vides the following expression for the estimated variance
of R

. M 2 s M-1g¢ M .
Var(Ry) = Y, 1 g, x Var(Rg, ) +2x Y, 0¥ © | @y XOgm XCOV(Rey Rgm)- (3)

Here, dependencies between cases within any given age
group will affect the variance of the age-group rate estima-
tor, while dependencies between cases in different age
groups will result in nonzero covariances between the age-
group rate estimators. The analog to interval (1) for age-
standardized rates is given by:

{exp{ln(Ra)IBGX %}, exp{ln(Ra)ﬂssx Va;(fa)}} (4)
Appendix equations (A.1) and (B.1) provide variance and
covariance estimation formulas applicable to the age-
group rate estimators (with rate scale per 100,000 person-
years) assuming a compound Poisson process model.
These can be substituted into (3) to obtain a computa-
tional formula for Var(R,), which when used in (4) pro-
vides an interval adjusting for multiple-case incidents.

When considering a ratio of age-standardized rate esti-
mates for two subgroups, there are three potential types of
dependency associated with multiple-case incidents: (i)

http://www.epi-perspectives.com/content/4/1/1

between cases within the same subgroup and age group,
(ii) between cases in different age groups within the same
subgroup, and (iii) between cases in different subgroups.
All three effects can be simultaneously illustrated by con-
sidering the ratio of age-standardized rates for males and
females. A multiple-case incident may variously involve
several males (or females) in the same age group; males
(or females) in different age groups (dependency between
case counts contributing to the same age-standardized
rate estimate); or both males and females (dependency
between case counts contributing to both numerator and
denominator rate estimates).

Letting R, 5, and R, ¢, denote the respective age-standard-
ized rate estimators for two subgroups, the age-standard-
ized rate ratio is estimated by RR, = R, /R, 5,. The
analog to interval (2) for age-standardized rate ratios is:

exp]In(RR,) —1.96x Var(f“‘“) + Var(}"sz) _ax SV RasiRasa) |
Ras1 Ras2 Ras1 XRas2

explIn(RR,)+1.96x |VaRas1)  VarRasp) ,  COVRas1Rasp) | | (5)
R Ris) Ras1 XRas2

Computational formulas for Var(R,.q;) and Var(R,.,)
under the compound Poisson process model can be
obtained as described above for interval (4). Appendix
equation (C.1) provides a computational formula for
Cov(R, .51, R,.gp) (with rate scale per 100,000 person-
years) assuming the compound Poisson process model.
These formulas can be substituted into (5) to obtain an
interval adjusting for the effects of multiple-case inci-
dents.

When there are no multiple-case incidents represented in
the data, the covariance estimates in (3) vanish as does the
term COv(R, g, R,.g,) appearing in (5). Under such cir-
cumstances (4) and (5) reduce to intervals appropriate
when case counts are assumed to follow a simple Poisson
distribution and subgroups are assumed independ-
ent.[22]

Stochastic simulation was used to evaluate the coverage
properties of adjusted intervals (4) and (5) when case
counts conform to a compound Poisson process model.
When the age distributions of the study groups of interest
do not depart too greatly from that of the referent popula-
tion, the simulation results suggest that coverage levels are
comparable to those reported earlier for the adjusted con-
fidence intervals for crude rates and rate ratios. In particu-
lar, estimated coverage was close to the nominal level
provided that underlying mean subgroup incident counts
were not less than 10.
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Assessment of Bias

It was noted at the outset that crude rate estimators are
unbiased; by extension age-standardized rate estimators
are also unbiased. Consequently, the coverage properties
of adjusted intervals for crude and age-standardized rates
depend on the appropriateness of the compound Poisson
process model as well as the accuracy of the normal
approximation implied when applying the delta method.

While the crude and age-standardized rate estimators are
unbiased, the rate ratio estimators are only asymptotically
unbiased. A supplementary assessment of finite-sample
bias in the simulations described following Example 3
suggests that it is relatively small compared to the stand-
ard error of the rate ratio estimator, for the simulation
inputs considered. In none of the simulations was the bias
strong enough to cause the effective coverage of the
adjusted (compound Poisson) interval to differ substan-
tially from the nominal level.

Conclusion

By referring to the compound Poisson process model in
place of the simple Poisson model for case counts, confi-
dence intervals for injury-related mortality rates and rate
ratios can be adjusted to account for statistical dependen-
cies associated with multiple-case incidents. The adjust-
ments rely on closed-form computations and offer
meaningful improvements in the accuracy of statistical
statements. The adjusted interval estimators described in
this paper have been programmed as general routines
using SAS.[19]

When the data show any pattern of multiple-case inci-
dents, the adjusted intervals for rates will be wider than
their unadjusted counterparts. This does not hold for the
adjusted intervals for rate ratios, however; different pat-
terns in the data can variously widen or narrow these
intervals relative to their unadjusted counterparts.

It is evident that in situations where multiple-case inci-
dents are very infrequent and involve small numbers of
cases when they do occur, there will be little difference
between the statistical results obtained using the methods
based on the compound Poisson process model and those
based on the simple Poisson model. In the context of the
NVDRS data, for example, when suicides are considered
separately there is almost no distinction between suicide-
related incident counts and suicide case counts (because
multiple-suicide incidents are extremely infrequent).
Conversely, there may be situations covered by other
reporting systems where multiple-case incidents are more
prominent and/or involve larger numbers of cases than in
the examples considered in this paper. Simulations show
that in such instances, the gaps between nominal and

http://www.epi-perspectives.com/content/4/1/1

effective coverage probabilities for the unadjusted interval
estimators become quite substantial.

Appendices
A. The Estimated Variance of a Total Case Count

Let N ~ Poisson(AP) denote the count of incidents and let
C,, C,, C,, ..., Cydenote the incident-specific case counts.

N . . . .
That Zk:l C} is an unbiased estimator for the variance

N
of the total case count C = Zkzl Cy under a compound

Poisson process model can be demonstrated using a basic
conditioning argument. Employing the assumptions spec-
ified in the text (particularly the independence assump-
tions) it follows that:

E[Y o CEl=Ex[E[Y P IN]|
= ExI,, EICE [ N1]
= Ex[X,0, EICE]
= EnINX (u? +07)]
= /IPX(/J2 +o-2),
Because the last term in the sequence of equalities corre-

sponds to the underlying variance of the total case count
C under the compound Poisson model, it follows that

Var(C) = 2?:1 Cﬁ is an unbiased estimator for Var(C).

Since the estimated case rate (per 100,000 person-years) is
given by R = C/P x 100,000, an unbiased estimate of
Var(R) is:

Var(R) = Var(C)/P? x100,000% = ¥ ¥ G} /P? x100,0007. (A1)

B. The Covariance of Rate Estimators

Let Cg, denote the total case count for subgroup 1 and let
Cs1-10 Co1.2 G153/
case counts (some possibly zero) for subgroup 1 (so

..., Cgp.y denote the incident-specific

Cg1 EZfﬂCSl-k)' Similarly, for subgroup 2 let Cg,

denote the total case count and let Cg, ;, Cs, .9, Csy .3/ -/
Cg,.n denote the incident-specific case counts (so

Cgp = 25:1 Csy.x ). The usual formula for the variance of

a sum:
Var(Cg, + Cg,) = Var(Cg,;) + Var(Cg,) + 2 x Cov(Cg;, Cg,)

can be rearranged to get:
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Cov(Cs;, Cs,) = (Var(Cg, + Cgy) - Var(Cg;) - Var(Cs,))/2.

The results of Appendix A provide unbiased estimators for
all of the terms appearing on the right-hand side of the
last equality. Substituting these unbiased estimators pro-
vides an unbiased estimate of the covariance:

R N N N
Cov(Cs1,Cs2) = (X 1y (Corkc + Cs21)” = Doy Gtk = Doy G2 /2

= Zizl(csrk X Cg2.k)-
Let Py, and Pg, denote the respective person-years at risk in
subgroups 1 and 2. The corresponding rate estimators
(per 100,000 person-years) are Rg; = Cg;/Pg; x 100,000
and Rg, = Cg,/Pg, x 100,000. It follows immediately that
an unbiased estimate of Cov(Rg;, Rg,) under a compound
Poisson process model is given by:

. N 2
Cov(Rg; Rgp) = D7, (Csi X Csax) /(Psg X Ps)x100,0007. (B.1)

C. The Covariance of Age-Standardized Rate Estimators
Consider age-standardized rate estimators R, 5; and R, ¢,
for two subgroups based on a partition of the data into M
age groups. Let Rg; .1, Rg;.qor Rgp. g3 - Rg1.gm denote the
age-group rate estimators (per 100,000 person-years) for
subgroup 1 and similarly let Rg, .1, Res.cor Rep.qsr -
Rq,.om denote the age-group rate estimators for subgroup
2. Referring to the (fixed) age-group population fractions
Oy Og Ogss - Oy defined in the text, the covariance
of the age-standardized rate estimators is given by:

M M
Cov(Ry.51,Ra.52) = Cov(Y,_ @Gr X Rs1.Grr D @Gm X Rs2.Gm)

M oM
= o1 Do 9Ge X OGm X COV(Rs1.r Rsa.Gm)-

An unbiased estimate of the last expression on the right-
hand side follows from the results of Appendix B. Specifi-
cally, for age group € in subgroup 1, let Cg;.c¢.1, Cs1. -2/
Cs1.ce.30 - Cg1.qe.n denote the incident-specific case
counts (some possibly zero) and let Pg; . o, denote the per-
son-years at risk. Similarly, for age group m in subgroup
2,1etCsy.cm-1- Csz.cm-2» Cs2.cm -3 -+ Csa.om. N denote the
incident-specific case counts and let Pg, ., denote the
person-years at risk. From (B.1) it follows that an unbi-
ased estimate for Cov(R,.g;, R,.g,) is:

Cov(Ry51/Ra.52) =

M oM N
Y 1 0Ge X 0Gm X X (Cs1.rk X Cs2.6m-k)/ (Ps1.Ge X Psa.m) X100,000%. (C.1)
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