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Abstract
Longitudinal studies are helpful in understanding how subtle associations between factors of
interest change over time. Our goal is to apply statistical methods which are appropriate for
analyzing longitudinal data to a repeated measures epidemiological study as a tutorial in the
appropriate use and interpretation of random effects models. To motivate their use, we study the
association of alcohol consumption on markers of HIV disease progression in an observational
cohort. To make valid inferences, the association among measurements correlated within a subject
must be taken into account.

We describe a linear mixed effects regression framework that accounts for the clustering of
longitudinal data and that can be fit using standard statistical software. We apply the linear mixed
effects model to a previously published dataset of HIV infected individuals with a history of alcohol
problems who are receiving HAART (n = 197). The researchers were interested in determining
the effect of alcohol use on HIV disease progression over time. Fitting a linear mixed effects
multiple regression model with a random intercept and random slope for each subject accounts for
the association of observations within subjects and yields parameters interpretable as in ordinary
multiple regression. A significant interaction between alcohol use and adherence to HAART is
found: subjects who use alcohol and are not fully adherent to their HIV medications had higher log
RNA (ribonucleic acid) viral load levels than fully adherent non-drinkers, fully adherent alcohol
users, and non-drinkers who were not fully adherent.

Longitudinal studies are increasingly common in epidemiological research. Software routines that
account for correlation between repeated measures using linear mixed effects methods are now
generally available and straightforward to utilize. These models allow the relaxation of assumptions
needed for approaches such as repeated measures ANOVA, and should be routinely incorporated
into the analysis of cohort studies.
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Background
The National Institute on Alcohol Abuse and Alcoholism
estimates that more than 13 million Americans suffer
from alcohol dependence or abuse [1]. HIV infection has
major health consequences, with estimates of 940,000
infected Americans [2]. These two health concerns are
related, and alcohol problems have been reported to be
more prevalent in HIV-infected patients. Among 665
patients who were establishing primary care for HIV infec-
tion, half were determined to have an alcohol problem
based on the CAGE questionnaire or clinical assessment
[3]. Before the advent of highly active antiretroviral ther-
apy (HAART), however no association between alcohol
use and HIV disease progression was found [4]. Samet et
al. [5] hypothesized that in the age of HAART, alcohol use,
because of its potential interaction with a variety of HIV
clinical issues including medication adherence, might
accelerate HIV disease progression. They found that,
among a cohort of HIV-infected individuals with a history
of alcohol problems (the HIV-Alcohol Longitudinal
Cohort, or HIV-ALC), those individuals receiving HAART
and consuming alcohol had significantly higher viral RNA
(ribonucleic acid) levels at baseline.

In this paper, we provide a tutorial on linear mixed effect
models to study repeated measures in this dataset includ-
ing follow-up data collected on subjects in the HIV-ALC
cohort [6]. Longitudinal cohort studies have the advan-
tage of providing detailed information about how a given
set of variables changes over time in an individual patient
and of facilitating the study of the factors that influence
this change. By collecting repeated measurements, we gain
the ability to distinguish between the degree of variation
across time for one person (within-individual change),
and the variation among people (between-individual
change). However, longitudinal studies present some sta-
tistical complexities, since the customary assumption that
all observations are independent usually does not hold.

In addition to the usual assumptions of regression meth-
ods, models for a single outcome assume that all observa-
tions of a particular variable are independent of one
another: knowing the value of one observation of a varia-
ble provides no information about the others, after con-
trolling for known covariates. This assumption does not
hold true in longitudinal studies, however, as multiple
observations of a variable on a particular person are likely
positively correlated (i.e. the errors may reflect a system-
atic trend within each individual).

One approach to this problem involves excluding all fol-
lowup data from the analysis and using only the baseline
data from the cohort – in this single-time-point subset of
the original dataset, the assumption of independence of
observations is plausible. However, this method utilizes

only part of the available data, and is highly inefficient
and inadvisable. Unless the correlation is quite high
between baseline and follow-up data, such an inefficient
approach will lead to less precise estimates, and does not
allow for assessment of time-varying exposures and out-
comes.

Another approach is to assume that repeated measure-
ments on an individual are independent despite the fact
that they are likely correlated. This may introduce bias
into the estimates of variability of the models' parameters,
and is not recommended (see [7] for a case study of the
perils of this mis-modeling).

A more principled approach, which we will illustrate in
this paper, involves modeling the within-individual relat-
edness (clustering) of measurements in order to make use
of all the data and simultaneously obtain unbiased esti-
mates of parameter variability. Although models that take
this clustering into consideration are more complicated,
they are also more powerful since they facilitate the study
of change over time. These issues have received a great
deal of attention in the statistical literature in recent years,
and the books by Diggle and colleagues [8] and Fitzmau-
rice, Laird and Ware [9] provide excellent overviews of the
field.

A classic method used to account for repeated measure-
ments in linear models is repeated measures analysis of
variance (RM-ANOVA). This model was developed for set-
tings with discrete covariates, complete data, and com-
mon measurement occasions for all subjects [9]. This
approach has some disadvantages in practice, however,
since in many longitudinal studies observations may be
unbalanced and/or incomplete and assumptions regard-
ing equal covariance between all observations may not be
tenable [10]. As we will illustrate, other approaches, such
as the linear mixed effects model that we describe, are
more attractive in this setting.

In this paper, we describe the linear mixed effects (LME)
or random effects/random coefficients model of Laird &
Ware [11], a versatile model that accounts for clustering.
Other approaches to estimation in this setting are dis-
cussed by Fitzmaurice et al. [9]. The LME approach pro-
vides a flexible yet parsimonious way of modeling the
association among repeated measurements. These within-
subject associations are often of secondary interest in lon-
gitudinal studies and the parameters that describe them in
the LME model are thus termed nuisance parameters. The
substantive parameters are those that describe the relation-
ship of primary interest between study variables. The LME
approach estimates the nuisance parameters and substan-
tive parameters simultaneously, yielding consistent esti-
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mates of the substantive parameters if the model for the
covariance and the mean are appropriately specified.

Samet et al. [5] conducted a cross-sectional analysis of the
baseline data from a cohort of HIV-infected individuals
with a history of alcohol problems (HIV-ALC). In a multi-
ple linear regression model that controlled for a number
of potential confounding variables, they found that
among subjects who were on HIV medications, those sub-
jects who used any alcohol (moderate or at risk use) had
significantly higher mean viral log RNA levels (p = .006)
than subjects who reported no drinking (fully abstinent)
during the previous 30 days; this association was attenu-
ated (p = 0.04) when adherence to HIV medications was
included as a predictor in the model. Further analysis of
data from this cohort has been reported [6].

In this paper, we will fit LME models to conduct a second-
ary analysis, using longitudinal methods to further
explore the issues they considered in their baseline analy-
sis. The goal of our analysis will be to explicate linear
mixed effects models in the context of understanding the
association between alcohol consumption and the pro-
gression of HIV/AIDS. Using repeated measures data will
allow us to take full advantage of all information available
in this cohort study and to assess how the associations
between alcohol use and HIV RNA levels changed over
time. Use of the LME is preferable to other approaches
such as classical RM-ANOVA, because it allows loosening
of assumptions that may not be tenable. While these
methods are particularly well-suited to the analysis we
consider, they are also applicable to many other types of
longitudinal epidemiology studies.

Analysis
Methods
We perform a secondary analysis of the HIV-Alcohol Lon-
gitudinal Cohort (HIV-ALC), a follow-up study of HIV-
infected patients with past or current history of alcohol
problems. The primary purpose of this longitudinal
cohort was to examine HIV progression of these subjects,
and prior results have been published previously [12-14].
Participants were recruited between July 1997 and July
2001. All participants resided in the Greater Boston area
and were recruited through the following sources: Boston
Medical Center (BMC) Diagnostic Evaluation Unit
(56%), posted fliers (17%), BMC Primary Care Clinic
(13%), respite facility for homeless persons (5%), metha-
done clinic (4%), subject referrals (4%), and Beth Israel
Deaconess Medical Center (BIDMC) (2%). Persons
recruited outside BMC or BIDMC were pre-screened by
telephone, and potentially eligible individuals were
invited to complete the screening process in person. The
Institutional Review Boards (IRB) of BMC, BIDMC and
Smith College approved this study.

Patients who were HIV-infected and had a history of alco-
hol problems were identified by explicit eligibility criteria:
confirmed HIV infection and a history of alcohol prob-
lems. Patients not receiving care at BMC or BIDMC were
asked to document their HIV diagnosis by providing
either HIV testing documentation or their HIV prescrip-
tion medications. Clinical assessment (in 10% of partici-
pants) or 2 or more positive responses to the CAGE
questionnaire (in 90%) were used to identify participants
with the criterion 'history of alcohol problems.' The CAGE
questionnaire [15] is a short, validated questionnaire with
good reliability in identifying problem drinkers. Diagnos-
tic interviews for alcohol problems in a sub-sample of
CAGE-positive subjects (n = 141) revealed a lifetime his-
tory of alcohol dependence (80%) or abuse (15%) [3].
Additional entry criteria included the following: evidence
of unimpaired cognitive function as determined by a score
of 21 or more on the Mini Mental State Examination [16];
no plans to leave the Boston area during the subsequent 2
years; and fluency in English or Spanish. For the Spanish
interview instrument, standardized scales in Spanish were
used when available; the remainder of the questionnaire
was translated from English into Spanish, back-translated
and revised.

There were 444 eligible subjects screened at these various
sites, 350 (79%) provided informed consent and agreed
to participate in the study. After providing informed con-
sent, subjects were scheduled to be interviewed every 6
months for a maximum of 7 visits. Since no follow-up
occurred after July 2001, subjects enrolled late in the study
had only a baseline assessment and a small number of fol-
low-up visits. Laboratory values of HIV RNA measured
within 3 months of each visit were obtained from medical
records whenever available. If not measured during rou-
tine clinical care, blood samples were drawn during the
visit by nursing staff and tested for HIV RNA level. Partic-
ipants were compensated US$20 or an equivalent gift cer-
tificate to a local grocery store. In this paper we analyze
the subset of this cohort made up of all participants receiv-
ing highly active antiretroviral therapy (HAART) at base-
line (n = 197).

Outcome variable
The base 10 log of one plus the viral load of HIV RNA
(log(RNA+1)) was used as a primary outcome of HIV dis-
ease progression in the HIV-ALC study. Measurement of
HIV RNA was performed using branched-chain DNA tech-
niques [17]. The lower threshold for detection at the time
of the study was 50 copies/ml – values < 50 were analyzed
as 0. We note that this approach is somewhat ad-hoc, and
more principled approaches have been developed [18].
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Measures of alcohol consumption
In the HIV-ALC study, alcohol use in the 30 days before
each interview was used as a measure of the usual pattern
of use. To encourage accurate reporting of alcohol con-
sumption, breath alcohol level was also measured before
the interview [19]. Alcohol consumption was calculated
using alcohol quantity and frequency questions as well as
the Addiction Severity Index, an assessment instrument
with well-documented reliability and validity in this pop-
ulation [20]. Alcohol use was initially classified as 'absti-
nent', 'moderate', or 'at-risk', based on the National
Institute on Alcohol Abuse and Alcoholism (NIAAA) rec-
ommendations, which define at risk drinking as more
than 14 drinks per week (or more than four in one day)
for men, and more than seven drinks per week (or more
than three in one day) for women [1]. Any alcohol con-
sumption below these levels was considered moderate use
in this study. Following the approach of Samet et al [5], a
dichotomous indicator of any consumption (yes/no) was
used in this analysis. Alcohol use was measured at each
study visit and thus varied over time.

Measures of adherence to HIV medication
Adherence to HAART was self-reported using the AIDS
Clinical Trials Group instrument. Subjects reported the
names of their antiretroviral medications as well as the
number of doses and the total number of pills prescribed
and taken daily [21]. The 3-day self-reported number of
pills missed was computed for each HIV medication.
Adherence was defined as a proportion of prescribed
doses taken (0–1).

Other factors
Basic demographic information included each partici-
pant's age in years, race/ethnicity (4 groups: black, white,
Latino, other), and gender. Homelessness was defined as
spending at least one night in a shelter or on the street in
the 6 months prior to the interview. The number of doses
of therapy each subject received per day was also recorded.
A group of 151 subjects in the cohort participated in a ran-
domized controlled trial of a HAART adherence interven-
tion [22]. Involvement in the ADHERE trial was included
as a three-category variable in our analysis (intervention/
control/not enrolled). Another three-category variable
was included that described a subject's primary HIV risk
factor: injection drug use, men having sex with men, or
heterosexual sex. Finally, to assess whether there were any
important cohort effects due to date of entry in the study,
we categorized subjects according to the year in which
they entered the study (1997–2001).

In this secondary analysis we wanted to replicate the
results of Samet et al [5] relating to adherence and alcohol
consumption, while utilizing the additional information
regarding follow-up observations. In addition, we

extended the previous analysis to assess whether subjects'
adherence to medications was acting as an effect modifier
for the association of alcohol consumption with HIV pro-
gression, i.e. whether the effect that alcohol had on RNA
levels differed across degrees of HAART adherence.

Statistical methods using linear mixed effects regression 
models
We fit linear mixed effects (LME) regression models
([9,11]) for log(RNA+1) levels over time. To help ground
the discussion of these models in the context of our exam-
ple, we display (in Figure 1) the observed log(RNA+1) lev-
els, adherence percentages, and alcohol abstinence values
(yes/no) for a sample of nine subjects. LME models
account for clustering of longitudinal data points (for
example, note that subject 4011's log(RNA+1) values are
consistently higher than subject 4189's) and thus provide
valid estimates of the regression parameters of interest
and their standard error. LME methods are also attractive
in this setting because, unlike classical repeated measures
ANOVA [22], they can loosen assumptions regarding the
form of associations within subjects and incorporate
imbalance in longitudinal data (note that subject 4180 is
only observed at baseline, whereas subject 4129 has six
follow-up visits). Furthermore, LME models distinguish
within-subject from between-subject sources of variation,
and also describe how individual and population mean
response trajectories change over time. At the same time,
LME models are particularly useful because their covari-
ance structures can often be described in a flexible and
parsimonious fashion.

The underlying premise of LME methods is that an out-
come of interest is determined by some factors that affect
all subjects in the same way and by other factors that affect
individuals in different ways. This premise is reflected in
the LME model by dividing the mean model regression
parameters into two distinct groups: fixed effects (or pop-
ulation effects) and random effects (or subject-specific
effects). The fixed effect parameters are shared by the
entire study population. The other parameters, the ran-
dom effects, are allowed to vary randomly from one indi-
vidual to another. These random effects are attractive
because one participant's RNA levels might consistently
be higher than the mean while another's might be lower
due to unmeasured factors such as genetic make-up,
immunologic factors, HIV mutations conferring resist-
ance, environment, education, personal habits, etc. These
differences would be reflected in the random-effects por-
tion of the model, thus allowing each individual to have
his/her own subject-specific mean response trajectory
over time. These random effects parameters reflect the nat-
ural heterogeneity of the population and thus account for
within-individual clustering of data points.
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Observed log(RNA+1), adherence and abstinence status over time for 9 subjectsFigure 1
Observed log(RNA+1), adherence and abstinence status over time for 9 subjects.
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In the LME framework, each participant's outcome trajec-
tory is modeled as a combination of the population char-
acteristics that are assumed to be shared by all individuals
(fixed effects), and that individual's unique subject spe-
cific effects (random effects). The mean response trajec-
tory in the population is obtained using a weighted
average of the random effects, which are almost always a
subset of the fixed effects. We will now introduce two
important special cases of the LME model using the nota-
tion of Fitzmaurice et al. [9].

Random intercept model
The most straightforward case of a linear mixed-effects
model is one in which each subject has only one random
effect – a randomly determined intercept (or individual
level). This model assumes that controlling for a subject's
level (intercept) sufficiently accounts for the association
between repeated measurements.

To illustrate this approach, consider a study with only two
time-points and two levels of drinking. In this study, sub-
ject i's predicted log(RNA+1) level at time-point j would
be given by:

E [RNAij|ti, drkij, bi] = β0 + β1ti1 + β2ti2 + β3drkij + bi

� β0 is the population's average intercept.

� t1 and t2 are dummy variables for time; β1 and β2 are their
associated fixed effect regression parameters.

� drkij = 1 if person i was using alcohol at time j, drkij = 0 if
person i was abstaining at time j; β3 describes the popula-
tion effect of alcohol use on log(RNA+1) levels.

� bi is person i's random intercept. In particular, bi repre-
sents the deviation of the ith individual's intercept from
the population's intercept β0.

By averaging over the distribution of the subject-specific
effects bi, we obtain the mean response profile in the pop-
ulation characterized by the fixed effect regression param-
eters of interest:

In Figure 2, we use an illustration due to Fitzmaurice et al.
[9] to demonstrate how this model could be applied in a
simple example. In this example, as shown on the left side
of the Figure, person A's measurements are consistently
higher than person B. Thus, person A would have a posi-
tive random intercept term (bA > 0) whereas person B's
random intercept would be negative (bB < 0). The individ-
uals' observed responses are allowed to vary randomly
above and below their conditional mean trajectories

because of the inclusion of the error terms eij. (In this
example, eA1 is positive whereas eA2 is negative.) By averag-
ing over these random effects, we obtain the marginal
mean response trajectory, M, the predicted outcome tra-
jectory for an 'average' subject in the population,
described using the fixed effects parameters.

The usefulness of the random intercept model however, is
limited by the fact that this model constrains the correla-
tion between repeated measurements to be the same no
matter how close or far apart in time the measurements
are taken. For example, in a study with six time-points, the
random intercept model makes the restrictive assumption
that the correlation between subject i's first and second
measurements is the same as the correlation between sub-
ject i's first and sixth measurements: corr (Yi1, Yi2) = corr
(Yi1, Yi6). This assumption of time-invariant correlation is
likely to be unrealistic for repeated observation of HIV
RNA (e.g. we would expect two consecutive measure-
ments to be more tightly correlated than two measure-
ments taken far apart in time). We will now introduce a
more flexible model that allows correlations between
repeated measures to change over time.

RNA t t drkj i i ij= + + +β β β β0 1 1 2 2 3 .

Hypothetical observed and predicted lines for two subjects from random intercept and random slope modelFigure 2
Hypothetical observed and predicted lines for two subjects 
from random intercept and random slope model.
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Random intercept and slope model
Another set of random effects covariance structures, which
makes less restrictive assumptions about the associations
between measurements, arises when additional parame-
ters (besides the intercept) are considered random and
subject-specific. The random intercept and slope model
allows both the intercept and slope to vary randomly
among subjects. The model given above would thus
change slightly:

E [RNAij|ti, drkij, bi] = β0 + β1ti1 + β2ti2+ β3drkij + b0i + b1itij

� b0i is subject i's random intercept.

� b1i is subject i's random slope.

The random intercept and slope model can best be under-
stood by considering another simple two-person experi-
ment, depicted on the right side of Figure 2, again due to
Fitzmaurice et al. [9]. In this example, person A's intercept
and slope are greater than the mean intercept and slope
respectively (b0A > 0, b1A > 0) because his or her measure-
ments are on average higher than the average in the group
and are also increasing at a faster rate. By the same token,
the intercept and slope of person B are less than the pop-
ulation averages for intercept and slope (b0B < 0, b1B < 0).
So, the mean trajectory has intercept β0 and slope β1; per-
son A has intercept β0 + b0A > β0 and slope β1 + b1A > β1;
person B has intercept β0 + b0B <β 0 and slope β1 + b1B <β1.
As was the case in the random intercept model, the inclu-
sion of the error terms eij allows the observed measure-
ments to deviate randomly from the subject-specific
trajectories.

Importantly, the covariance structure of this model is less
restrictive than the random intercept model. In particular,
the random intercept and slope model allows correlations
between measurements to change with time – the correla-
tion between Yij and Yik is modeled as a function of the
times of measurement. To illustrate the increase in flexi-
bility that comes from including a random slope, we
return to the example of the HIV-ALC dataset, noting that
in the random-intercept model, the correlation between
any two measurements on the same person, regardless of
how far apart they were in time, was constrained to be corr
(Yij, Yik) = 0.40. The addition of a random slope, however,
allowed this quantity to vary according to the times of
measurement: in the random-intercept-and-slope model,
corr (Yi0, Yi6) = 0.47 and corr (Yi0, Yi36) = 0.16. This agrees
with intuition – one would expect measurements of viral
RNA made 6 months apart in time to be more tightly cor-
related than measurements made three years apart. In
addressing the HIV data analysis with repeated measure-
ments taken months apart, this is an attractive feature, and
we adopted this approach.

Estimation of the regression parameters of interest as well
as the variance-covariance matrix of the random effects
(assuming multivariate normality) proceeds simultane-
ously. Two options for maximization include a standard
likelihood or a restricted likelihood (REML), where the
former is biased in small samples. An extensive discussion
of estimation can be found in [11].

It is often the case that primary scientific interest lies in the
interpretation of the parameters that describe the mean
and subject-specific trajectories. An appealing feature of
LME models is that after the within-subject association
has been accounted for (using either the random intercept
model, the random intercept and slope model, or a more
complex model), the nuisance parameters that describe
this covariance structure can typically be ignored and
focus can be given to interpreting the substantive parame-
ters. Settings where the variance parameters are of interest
in their own right (such as studies of observer variation)
can be accommodated by LME models as well.

While we have focused on models for responses that are
approximately Gaussian, extensions to other types of out-
comes (e.g. counts or dichotomous variables) have been
undertaken using the mixed effects framework. The text by
Fitzmaurice, Laird and Ware [9] provides an accessible
introduction to random effects for the generalized linear
model.

We now turn to the specification of the log(RNA+1)
regression model for the fixed effects parameters. The
inclusion of follow-up data in our analysis enabled us to
study the effect of time on HIV RNA levels as well as the
interaction between time and alcohol use, our covariate of
primary interest. Entry into the study was not linked to
any treatment or clinical event, and we therefore had no
specific hypotheses about relationships among time,
time-varying measures of alcohol consumption and
adherence, and changes in log(RNA+1) viral loads.

We included a relatively rich set of covariates into our lin-
ear mixed effects model, incorporating: time (df = 6), age,
race/ethnicity (df = 3), gender, any report of homeless-
ness, number of doses of HAART prescribed per day,
adherence to HAART, involvement in the ADHERE study
(df = 2) [22], year of entry into the HIV-ALC study, and
primary HIV risk factor. We justified the use of this 'inclu-
sive approach' [23] in two ways. First, any of these varia-
bles could potentially be a confounder of the relationship
of interest. Second, in a study in which only 44% of
intended observations were made, the inclusion of what
Collins et al. [23] call 'auxiliary variables' is suggested.
While the focus of this paper is not on missing data, we
note that LME methodology yields consistent estimates
when missing data are missing at random in the sense of
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Little and Rubin [24]. Informally, this means that miss-
ingness is ignorable when it is related only to observed
quantities. By incorporation of additional information
already collected in the study, assumptions regarding the
ignorability of missing data become more plausible (yet
we note that the validity of the assumption of ignorability
remains inherently untestable without additional data
regarding missing observations).

Pairwise interactions between time, alcohol consumption
and adherence were included in the model, and retained
if their p-values were less than 0.10. These interactions
were considered because there was substantive interest in
these factors. Because of the complications in interpreting
multiple degree of freedom interactions, only those
achieving a modest degree of statistical significance were
included in the final model.

In the cross-sectional analysis conducted by Samet et al.
[5], controlling for adherence to HAART yielded attenu-
ated results (p = 0.04 as opposed to p = .006). To further
explore whether adherence might be an effect modifier of
the drinking/RNA association (i.e. whether the effect of
drinking on RNA was modified depending on the values
of adherence), we decided to test for the significance of

the interaction effect between alcohol use and adherence
in our model. This effect was moderately significant (p =
.02) and the interaction was retained. R version 2.4.1 and
SAS version 9.1 were used for estimation. The Appendix
provides the syntax needed to fit the LME model in three
general purpose statistical packages: R, SAS and Stata.

Results
Table 1 describes the analytic sample of the HIV-ALC
cohort on HAART. Key characteristics include the follow-
ing: 58% report injection drug use as their primary HIV
risk factor; 22% are homeless; 40% currently using alco-
hol, 18% are female, and the average age is 40 years.

Table 2 displays the results of the multiple longitudinal
LME regression model of log(RNA+1) levels. Alcohol use
was a significant predictor of log(RNA+1) levels with
abstainers having lower levels of RNA on average. There
was a significant interaction between alcohol consump-
tion and adherence (p = 0.02) and the interaction was
retained. Subjects who used alcohol and were less adher-
ent to their medications had significantly higher
log(RNA+1) levels than non-drinkers who had better
adherence to their HAART regimens, alcohol users who
had better adherence to their HAART regimens, and non-

Table 1: Characteristics of the HIV-ALC Cohort on HAART at baseline (n = 197)

Percent Count

Primary HIV risk factor
Men sex with men 21% 42
Injection drug use 58% 115
Heterosexual sex 20% 40

Race/ethnicity
Black 41% 80
White 37% 73
Latino 22% 43
Other 1% 1

Uses alcohol 40% 79
Female 18% 36
Homeless 22% 43
Enrollment year

1997 10% 19
1998 33% 65
1999 37% 72
2000 16% 32
2001 5% 9

ADHERE enrollment
Not enrolled 49% 96
Control 26% 52
Intervention 25% 49

Mean (SD) min, max
Doses of HAART/day 5.0 (1.6) 2, 10
3 day HAART adherence 0.9 (0.2) 0, 1
Age 40.8 (7.4) 19.5,66.2
Log10(RNA+1) 2.0 (1.9) 0, 5.7

Note: due to rounding some values may not sum to 100%
Page 8 of 14
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drinkers who were less adherent to their HAART regimens.
To help interpret the statistically significant interaction
between alcohol consumption and adherence, Figure 3
shows the predicted log(1 + RNA) trajectories over time
for four hypothetical subjects, one who doesn't drink and
is 100% adherent, one who doesn't drink and is 0%
adherent, one who uses alcohol and is 100% adherent,
and one who uses alcohol and is 0% adherent (each hypo-
thetical subject represents an 'average' subject with respect
to baseline covariates). The time by adherence interaction
effect was dropped as there was little evidence that it
added to the model (p = 0.65).

To assess the value of incorporating follow-up data, we
also fit a cross-sectional model utilizing only data from
the baseline timepoint (n = 197, Table 3). The significance

of the alcohol consumption by adherence interaction was
attenuated (p = 0.053), in part due to the reduced sample
size.

We also assessed the importance of accounting for cluster-
ing, by fitting a model for all time points that inappropri-
ately ignored the correlation. This incorrect model yielded
a spuriously statistically significant interaction effect for
alcohol consumption and adherence (p = 0.0006).

For any model, it is important to verify assumptions made
in estimation. For the LME random intercept and slope
model, in addition to assumptions of standard multiple
regression models, estimation proceeds assuming that the
distribution of the random intercepts and slopes is
approximately bivariate normal. Figure 4 displays a histo-

Table 2: Summary of LME Model of Log10(RNA+1) (n = 618 observations derived from 197 subjects)

Est (SE) p-value Multiple df p-value

Intercept 1.9 (.98) .06
Time .37 (df = 6)

Time0 .58 (.48) .23
Time6 .69 (.48) .15
Time12 .84 (.48) .08
Time18 .88 (.50) .08
Time24 .58 (.49) .24
Time30 .18 (.49) .72
Time36 0 .

Drink 3.6 (.97) .0003
Adherence -.39 (.58) .50
Time*Drink .01 (df = 6)

Time0*Drink -1.7 (.81) .04
Time6*Drink -2.2 (.81) .006
Time12*Drink -2.4 (.82) .003
Time18*Drink -1.9 (.82) .02
Time24*Drink -1.5 (.84) .07
Time30*Drink -.93 (.85) .27
Time36*Drink 0 .

Drink*Adherence -1.6 (.67) .02
Age -.02 (.01) .12
Female .21 (.27) .45
Homeless .04 (.19) .85
Doses/day -.02 (.05) .65
Enrollment year .22 (.11) .04
Race/ethnicity .22 (df = 3)

Black .21 (.23) .37
Latino .04 (.28) .88
Other 1.8 (.93) .05
White 0 .

ADHERE assignment .27 (df = 2)
Non ADHERE -.39 (.24) .11
ADHERE treatment -.16 (.25) .17
ADHERE control 0 .

Primary HIV risk factor .25 (df = 2)
Men sex with men .46 (.33) .17
Injection drug use .44 (.27) .11
Heterosexual sex 0 .
Page 9 of 14
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gram (with normal [mean = 0, variance = 1.5] density
overlaid) of the random intercepts, while Figure 5 displays
the histogram of the random slope parameters (with nor-
mal [0,0.0019] overlaid). Neither histogram presents
strong evidence against the normality assumption.

Figure 6 displays the scatterplot of random slopes and
intercepts, which appears to be a cloud of points consist-
ent with a bivariate normal density, albeit with a number
of points on the line given by slope = -.02*intercept. The
9 subjects labeled in Figure 1 are indicated to help inter-
pret this scatterplot. For subjects with only one observa-
tion (e.g. 4180, 4361) the predicted slope is essentially
borrowed from other values within the sample. Many of
the subjects in the HIV-ALC cohort were observed at only
1 timepoint. The negative correlation (-0.53) of the cloud
of points indicates that there is an inverse association
between intercepts and slopes: subjects with low
log(RNA+1) values at baseline are likely to see increases in
log(RNA+1) values over time (i.e. have more potential for
increase), while subjects with high log(RNA+1) values at
baseline are likely to decrease over time. Subjects whose
log(RNA+1) values increased over time had positive ran-
dom slopes (e.g. 4065, 4048) while subjects with a
decrease had negative slopes (e.g. 4189 and 4140).

Conclusion
Our primary goal was to motivate and illustrate the use of
linear mixed effect regression models for longitudinal epi-
demiologic data in an alcohol research setting. Using the
LME model to account for clustering within subject ena-
bled us to make full use of the available data. Whereas
Samet et al. [5] conducted a cross-sectional analysis of the
baseline data from the HIV-ALC cohort, we analyzed data
collected at 7 different timepoints. By utilizing this addi-
tional information, we were able to detect the subtle inter-
action effect between adherence and alcohol

Table 3: Summary of Linear Regression Model of Log10(RNA+1) at baseline (n = 197 observations)

Est (SE) p-value Multiple df p-value

Intercept 1.0 (1.3) .43
Drink 2.6 (1.2) .03
Adherence -.37 (1.0) .71
Drink*Adherence -2.4 (1.2) .05
Age 0.0 (.02) .98
Female .58 (.37) .12
Homeless .44 (.32) .18
Doses/day -.07 (.09) .43
Enrollment year .32 (.14) .02
Race/ethnicity .94 (df = 3)

Black .06 (.32) .84
Latino .06 (.36) .88
Other 1.2 (1.8) .53
White 0 .

ADHERE assignment .36 (df = 2)
Non ADHERE -.12 (.33) .73
ADHERE treatment .35 (.37) .35
ADHERE control 0 .

Primary HIV risk factor .13 (df = 2)
Men sex with men .83 (.7) .08
Injection drug use .69 (.37) .06
Heterosexual sex 0 .

log(RNA+1) predicted values over time from random inter-cept and slope model by adherence and abstinence statusFigure 3
log(RNA+1) predicted values over time from random inter-
cept and slope model by adherence and abstinence status.
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consumption that was moderately significant in our lon-
gitudinal analysis (p = .018), but only borderline signifi-
cant (p = .053) in a cross-sectional baseline analysis that
included all other covariates except time. While the sub-
stantive conclusions regarding this interaction are similar
in both models, the potential efficiency gain of including
all available observations should not be dismissed. The
results of our analysis suggest that for this sample of sub-
jects with a history of alcohol problems either adhering to
one's HAART regimen, or abstaining from alcohol was sig-
nificantly associated with relatively lower levels of
log(RNA+1) viral load. Limitations of this investigation
include self-report of alcohol consumption and adher-
ence, missing data, and relatively modest sample size. We
also note the possibility that effects of readiness to change
as a predictor of subsequent drinking behavior may be
mediated/moderated by factors such as "self-efficacy,"
which the current analyses do not directly address. Further
exploration of the interacting effects of drinking and
adherence thus seems merited.

The linear mixed effects models that we have described
provide a flexible structure for modeling the covariance

among repeated observations, thus yielding valid esti-
mates of regression parameter variances. We concur with
the advice of Fitzmaurice and colleagues who stated that
given modern computing capabilities, which support a
wider class of models for longitudinal data, "there is little
reason to analyze longitudinal data under the inherent
limitations and constraints imposed by the repeated
measures ANOVA model" [9].

After the association in longitudinal studies has been
accounted for, focus can shift to interpreting the substan-
tive parameters that describe the relationships of scientific
interest. The interpretation of parameters from a multiple
regression model is of crucial importance, and a similar
process of interpretation is needed for the LME model.

Extensions to non-normally distributed outcomes (e.g.
binary or count outcomes), while not discussed in detail
here, are tractable, as routines to fit both linear and non-
linear models exist in general purpose statistical software
(including but not limited to R, SAS, S-plus, SPSS, and
Stata). While there are a number of additional complica-

Histogram of random slopes from random slope model (plus normal density)Figure 5
Histogram of random slopes from random slope model (plus 
normal density).
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Histogram of random intercepts from random slope model (plus normal density)Figure 4
Histogram of random intercepts from random slope model 
(plus normal density).
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tions in fitting non-linear models, in terms of computa-
tional requirements and convergence, the general
framework is analogous to the linear setting that we
describe. These models are applicable to a wide range of
outcomes arising in alcohol studies, and should be uti-
lized routinely.

Incomplete observations arise in most longitudinal stud-
ies. It is rarely, if ever, the case that every planned meas-
urement can be successfully obtained; some subset of
these intended measurements are often missing. LME
methods incorporate incomplete data under the assump-
tion that missingness is at random (MAR, not related to
unobserved quantities). Although estimates made under
MAR have been shown to be relatively robust to small
deviations from this assumption [23] this is not always
true, and it is important to consider whether this (untest-
able) assumption is tenable. An extensive literature exists
regarding the use of non-ignorable non-response models
to assess sensitivity to the MAR assumption [25].

As with any model, verification of other assumptions
(residual analysis, examination of influential points, etc.)
is critically important. We focused attention on assump-
tions of normality of the random effects parameters, but
other model-checking is always indicated. The multiple-
bias methods of Greenland [26] provide a general frame-
work for consideration of non-sampling errors that could
affect results in substantial ways.

In this report we have provided a brief introduction and
application of LME models, but have only touched on
many important issues and have neglected other crucial
aspects. More comprehensive descriptions of these meth-
ods exist (e.g. [8,9]) and are appropriate next steps for
analysts considering use of these models. In addition,
other approaches to the analysis of longitudinal or clus-
tered data have been proposed. The population averaged
generalized estimating equation (GEE) approach of Liang
and Zeger [27] is another feasible approach, particularly
for non-normally distributed outcomes. Extensions of the
random effects framework using Bayesian estimation [28]
have been utilized to address additional complexities and
loosen assumptions (i.e. use of a t distribution rather than
a normal distribution for the random effects). Finally,
latent variable models [29] provide an attractive frame-
work with a similar flavor, with implementations availa-
ble (e.g. Stata and Mplus). These models extend the
random effects model to fit multilevel factor and item
response models, latent class models, and multilevel
structural equation models.
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Appendix
Code to implement linear mixed effects models in general
purpose statistical software.

R

1 library(nlme)

2 lmefit < – lme(logrna ~as.factor(time) + 
drkhaz2 + pct3d +

3 as.factor(time)*drkhaz2 + 
drkhaz2*pct3d + age +

Scatterplot of random intercepts and random slopes (9 sub-jects displayed in Figure 1 are indicated by their identification numbers)Figure 6
Scatterplot of random intercepts and random slopes (9 sub-
jects displayed in Figure 1 are indicated by their identification 
numbers).
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4 as.factor(race) + female + homeless 
+ dose_day +

5 as.factor(adhere3) + as.fac-
tor(hivrsk) + cohort2,

6 data = ds, random = ~time2 | patid)

In line 1, we load the "nlme" (non-linear mixed effects)
library. In line 2, we use the command "lme" to fit an
LME model with response variable "logrna", with out-
put object "lmefit". Lines 2–5 specify the model's fixed-
effects covariates, with categorical variables designated
using "as.factor". In line 6, we specify the analysis
dataset, and indicate that subject's slopes over "time2" (a
continuous version of time) are to be random. To indicate
the subject clustering, we specify the subject ID number
variable, as the grouping factor, using the code "| patid".

SAS

7 proc mixed data = ds;

8 class patid time hivrsk race 
adhere3;

9 model logrna = time drkhaz2 pct3d 
time*drkhaz2

10 drkhaz2*pct3d age race female 
homeless dose_day

11 adhere3 hivrsk cohort2/s;

12 random int time2/type = un subject 
= patid s g;

13 run;

In line 7, we call SAS PROC MIXED, applying it to a data-
set called "ds". In line 8, we specify the categorical varia-
bles. In lines 9–11, we use the "model" statement to
specify our response variable and fixed effects, with "/s
requesting the regression solution. In line 12, we specify a
random intercept and slope model using a continuous
time variable ("time2") and that the data is clustered by
the subject ID variable "patid", with an unstructured
working covariance matrix for the random effects param-
eters.

Stata

14 xi: xtmixed logrna i.time drkhaz2 pct3d 
i.drkhaz2*i.time

15 i.drkhaz2*pct3d age i.race female 
homeless

16 dose_day i.adhere3 i.hivrsk 
cohort2 || patid: time2,

17 covariance(unstructured)

The "xi" command allows the dynamic creation of cate-
gorical variables as well as interactions for the "xtmixed"
command. The clustering is indicated by the "|| patid:"
command, with "time2" given as the continuous meas-
ure of time and unstructured working covariance matrix
for the random effects parameters.
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