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Abstract
Background: While the population attributable fraction (PAF) provides potentially valuable
information regarding the community-level effect of risk factors, significant limitations exist with
current strategies for estimating a PAF in multiple risk factor models. These strategies can result
in paradoxical or ambiguous measures of effect, or require unrealistic assumptions regarding
variables in the model. A method is proposed in which an overall or total PAF across multiple risk
factors is partitioned into components based upon a sequential ordering of effects. This method is
applied to several hypothetical data sets in order to demonstrate its application and interpretation
in diverse analytic situations.

Results: The proposed method is demonstrated to provide clear and interpretable measures of
effect, even when risk factors are related/correlated and/or when risk factors interact.
Furthermore, this strategy not only addresses, but also quantifies issues raised by other researchers
who have noted the potential impact of population-shifts on population-level effects in multiple risk
factor models.

Conclusion: Combined with simple, unadjusted PAF estimates and an aggregate PAF based on all
risk factors under consideration, the sequentially partitioned PAF provides valuable additional
information regarding the process through which population rates of a disorder may be impacted.
In addition, the approach can also be used to statistically control for confounding by other variables,
while avoiding the potential pitfalls of attempting to separately differentiate direct and indirect
effects.

Background
Recent attention has focused upon the need to consider
the sequential chain of effects when calculating and inter-
preting relative risk in multiple risk factor models[1]. For
example, as illustrated in Figure 1, simultaneously con-
trolling for the mutual association between smoking and
birthweight when examining the effect of these variables
upon mild mental retardation (MMR) (Figure 1, middle

and lower panels) is not equivalent to a model in which
smoking leads to elevated risk for low birthweight, which
then leads to elevated risk for MMR[2] (Figure 1, top
panel). With such models, the manner and sequence in
which relative risk is calculated vary depending on the
order of the variable in the sequence of effects. A similar
issue applies to the estimation of measures of community
level effect, such as the population attributable fraction
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(PAF)–also referred to as population attributable risk, or
attributable risk. Ignoring the causal or sequential order-
ing of risk factors either assumes that they are independ-
ent (i.e., do not influence each other–Figure 1, middle
panel) or assumes that they are all mutually correlated–
every risk factor influences or has bidirectional associa-
tions with every other risk factor (Figure 1, bottom panel),
even if one occurs in childhood and the other before a
child was born.

In a sequential or causal ordering of effects, an earlier risk
factor can impact subsequent risk factors by increasing
their rate or prevalence (i.e., an indirect effect). In other
words, an indirect effect is where one predictor variable
has an impact on an outcome variable through an inter-

mediate predictor variable (e.g., smoking influences low
birthweight, low birthweight influences MMR–see Figure
1, top panel). In addition, one risk factor may interact
with a subsequent risk factor by magnifying or reducing
the effect it has upon the outcome (i.e., an interaction
effect).

It's worth noting that two predictors can have an indirect
effect on an outcome with no interaction effect: For exam-
ple, smoking may lead to higher rates of low birthweight,
and low birthweight may lead to higher rates of MMR; but
the effect of being born low birthweight may be identical
for all children, regardless of whether or not their mother
smoked during pregnancy. Similarly, absence of an indi-
rect effect does not preclude an interaction effect upon the

Different Relationships Among Multiple Risk FactorsFigure 1
Different Relationships Among Multiple Risk Factors.
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same outcome. For example, child sex and birthweight
may have no correlation with each other–and hence no
indirect effect–while the effect of low birthweight on a
developmental outcome may be very small for females
but very large for males (i.e., a large interaction effect).

While several strategies exist for estimating a PAF for one
risk factor while simultaneously statistically controlling
for other variables [3-5], these strategies do not consider
the sequence in which these variables influence each other
and the outcome as just described. This results in esti-
mates that have a variety of known problems, including
values that are paradoxical, counter-intuitive, or simply
nonsensical[6]. These and similar problems have led
some to question whether adjusted PAFs are of any prac-
tical value [7-10]. Furthermore, these strategies generally
involve either estimating the direct effect (e.g., effect of
smoking on MMR that is unrelated to birthweight) or the
indirect effect (e.g., effect of smoking on MMR that is
related to smoking's effect on birthweight–see Figure 1,
top panel). However, others have noted various issues
with differentiating direct and indirect effects in biological
models [7-10], again, raising questions as to the practical-
ity of calculating adjusted PAFs in multiple risk factor
models.

In contrast, this paper outlines a procedure for partition-
ing the overall PAF associated with a group of risk factors
into the individual effects associated with each specific
risk factor based upon the order of that risk factor in the
sequence of effects. As will be described in more detail,
this technique directly parallels the estimation of R2 and
change in R2 one estimates through a hierarchical multi-
ple regression in which variables are entered in multiple
steps, with those that occur earlier in a process (e.g., pre-
natal factors) entered prior to those that occur later in a
process (e.g., early childhood environment). This results
in parameter estimates at any given step being adjusted for
the effects of those variables that were entered in earlier
steps. This same process can be used to adjust for con-
founding by other variables, such as sex or SES, which
may be related to the risk factors and outcome of interest.

It is also worth noting that an additional strength of this
approach is that it adjusts a PAF for previously entered
effects without attempting to differentiate direct and/or
indirect effects. Instead, in estimates the total or net effect
of a variable–direct and indirect effects combined–after
controlling for other risk factors and/or confounding by
other variables.

The proposed procedure is appropriate for representative
or population-based studies where estimates of the risk
ratio (RR) and the prevalence of a risk factor (pe) can be
directly estimated. We first briefly describe existing strate-

gies for assessing adjusted PAFs in multiple risk factor
models, and then describe the proposed strategy for parti-
tioning a PAF based upon the order of effects, drawing the
parallels between this approach and the estimate of R2 and
change in R2 in a multiple regression analysis. We illus-
trate this technique in three scenarios: (1) two risk factors
are related/correlated with each other, but do not interact
(i.e., there is not interaction effect), (2) two risk factors are
not related/correlated with each other, but do interact
(i.e., there is an interaction effect), (3) two risk factors are
related/correlated with each other and interact.

Estimation of PAF in stratified models
The most transparent approach for estimating a PAF
across multiple risk factors is to use a stratified model. In
a stratified model, the sample is stratified based upon the
possible combinations of risk factors, and a PAF is esti-
mated for each combination. The referent group is those
without any of the risk factors under consideration. An
example of this approach is presented in Figure 2, where
risk factor A and risk factor B are risk factors for MMR in
children. The referent group consists of children with nei-
ther risk factor, and there are three "at-risk" groups: those
with A only, those with B only, and those with both A and
B. A PAF is calculated for any one these combinations of
A and/or B using Equation 1.

where i indicates which of the three at-risk groups is being
estimated, PAFi indicates the estimated PAF for the corre-
sponding group, and Pei is the proportion of the sample in
group i. In addition, Pe1, Pe2, and Pe3 indicate the propor-
tion of the sample in each of the three at-risk groups, and
RR1, RR2, and RR3 indicate their corresponding risk ratio.
In other words, three PAFs are calculated, corresponding
to those with A only, B only, and those with both A and B.
When calculating these estimates, the denominator does
not change; however, the numerator for any given esti-
mate is equal to the proportion of the sample in that risk-
group (Pei), multiplied by the corresponding risk-ratio
minus 1.

There are several limitations with this strategy. Specifi-
cally, stratification does not incorporate any sequence of
effect between the risk factors, and it assumes that there is
no association between the risk factors. However, it
should be noted that the sum of the stratified PAFs (PAF-

AGG) is a legitimate estimate of the combined aggregate
effect of both risk factors relative to those without either
risk factor. In other words, PAFAGG estimates the percent-
age of cases in the population that are associated with
either or both A and B regardless of whether A and B are

PAF
Pei RRi

Pe RR Pe RR Pe RRi =
−( )

+ −( )+ −( )+ −( )
1

1 1 1 1 2 2 1 3 3 1

(1)
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unrelated or whether they are strongly related. This is
equivalent to removing any distinction between the two
risk factors and simply performing a risk/no risk compar-
ison, as illustrated at the bottom of Figure 2. The issue
becomes problematic when one wishes to use stratifica-
tion to examine the effect specific to either A or B.

Additional existing strategies for estimating adjusted pafs
In situations where risk factors are related, several formu-
las exist for estimating adjusted PAF's [3-5]. These tech-
niques involve adjusting the relative risk for one variable
for the effect of other variables, and then using this
adjusted relative risk for estimating a PAF. For example,
using a Mantel-Haenszel odds ratio, an adjusted PAF can
be estimated using Equation Two...

where pe is estimated as the ratio of the number of
exposed cases, relative to the total number of cases, and

ORMH is the Mantel-Haenszel odds ratio. The result is a
PAF adjusted for the effect of other risk factors in the
model. Alternatively, others have proposed strategies for
estimating an adjusted PAF through a multiple logistic
regression[3]. In general, these approaches use logistic
regression to calculate an odds-ratio adjusted for other
effects, and then uses this adjusted odds-ratio to estimate
a PAF.

While resolving the issue of related/correlated risk factors,
these approaches have their own limitations. As noted by
Rowe and colleagues, individual, unadjusted PAFs can
sum to more than 1.0 because a person with more than
one risk factor can have a disorder prevented (or caused)
in more than one way[6]. For example, if the combination
of two risk factors is a sufficient cause for a disorder, cases
among individuals with both risk factors will be "double
counted" when calculating a PAF for each of these risk fac-
tors. Consequently, one might expect adjustment tech-
niques to remove this "overlapping" risk [11] and result in
adjusted PAFs that do not sum to more than 1.0.

PAF p
ORMH
ORMH

e′ = −1
(2)

Calculating PAFAGGFigure 2
Calculating PAFAGG.

�����
��	
���


�����
��	
���� �������

��
������
�� ��
�� �� � ��

�
��
������
�
�

� � �� ��� �			 	
��	 	
	�� �
�		 ������
� ��
�� �	 ��	 �			 	
��	 	
	�	 �
			 ������

��
�� � �� ��� �			 	
��	 	
	�� �
�		  ����
��
�� ��
�� �	 ��	 �			 	
��	 	
	�	

��
��  ! ���! �!!! ���"#�

�������
��
������

�� ��
�� ��� � �� �
�

�	 ���	 �			 	
��	 	
	�	 �
			 ���"#�

�	 ��	 �			 	
��	 	
	�	

��
��  ! ���! �!!!

$%&'(
)$������
�$*+��,��$��'�
�'�*��
�
**

������

����������������
���
������ � �

�����������
����

�� � �


,�'*'�
)�-
�

Page 4 of 17
(page number not for citation purposes)



Epidemiologic Perspectives & Innovations 2008, 5:5 http://www.epi-perspectives.com/content/5/1/5
However, as demonstrated by Coughlin and col-
leagues[12], many of these techniques fail in this regard.
Specifically, Coughlin and colleagues examined birth-
weight and maternal consumption of processed lunch-
meat as risk factors for childhood astrocytoma. Using a
logistic model, the authors found that the PAF for birth-
weight and processed meat considered jointly was equal
to .791. After adjusting each risk factor for its association
with the other, the authors reported that the adjusted PAF
for birthweight was equal to .558, while the adjusted PAF
for processed lunchmeat was .521. Not only did the
adjusted PAFs sum to more than the joint PAF when both
variables were aggregated, the adjusted PAFs summed to
more than 1.0. In this same paper, Coughlin and col-
leagues propose an adjustment strategy in which the
adjusted PAFs will sum to the joint, aggregate PAF for both
risk factors together [12]; however, this strategy, as well as
other techniques for calculating adjusted PAFs, does not
address the sequence of effects. Instead, they simultane-
ously remove the effect of all other variables upon each
other without considering how earlier risk factors may
impact the prevalence of later risk factors.

An alternative strategy: partitioning a paf sequentially
Background
The method being proposed here is based on an alterna-
tive approach to estimating adjusted PAFs. As described
below, the method can be seen as being somewhat analo-
gous to partitioning R2 in a multi-step, hierarchical multi-
ple regression, where the estimation of r2 (i.e., the net or
total effect of a single variable), total R2 (i.e., the net or
total effect of a set of variables), and change in R2 (i.e., the
net effect of a variable(s) after controlling for previously
entered variables) in a multiple regression analysis[13,14]
have parallels in a simple/unadjusted PAF, an aggregate
PAF, and an adjusted PAF. This point is illustrated through
a hypothetical study using multiple regression, in which
child sex, early childhood parenting, and adolescent peer
behavior serve as predictors of adolescent problem behav-
ior.

Simple Effects
One might begin such a study by examining the individ-
ual simple r2 of each of these three predictors in relation
to adolescent problem behavior. In our hypothetical
example, this might result in r2 = .30 for child sex, r2 = .35
for early childhood parenting, and r2 = .40 for adolescent
peer behavior. There is nothing inherently wrong with
these three r2 estimates–each describes the total or net
association between the corresponding predictor and the
outcome (adolescent problem behavior).

This has a direct parallel with PAF estimates in multiple
risk factor models. Consider a simple alternative example,
where maternal smoking during pregnancy and low birth

weight are predictors of MMR in elementary school. One
can estimate a simple, unadjusted PAF for smoking and a
simple, unadjusted PAF for birth weight–and these would
be entirely valid estimates of the total or net association
between these risk factors and MMR.

Aggregate/Total Effects
Returning to the multiple regression example, if one was
interested in simultaneously examining the total effect of
all three predictors combined, simply adding the unad-
justed r2's would result in a sum of 1.05, an impossible
and nonsensical solution. This reflects the lack of inde-
pendence among the predictors (i.e., the predictors are
related to each other), with some of the effect being
shared across these variables. Instead, one could perform
a multiple regression by entering all three predictors in a
single step. In this hypothetical example, we will assume
that this results in an R2 of .45, indicating that the three
variables as a group account for 45% of the variance in
adolescent problem behavior scores.

Again, this has a direct parallel with PAF estimates in mul-
tiple risk factor models. If one was interested in simulta-
neously examining the effect of multiple predictors and
simply added their unadjusted PAFs, the result would not
only be invalid, but could be impossible or nonsensical.
Instead, one can estimate a total or aggregate PAF (PAF-

AGG) by comparing those with none of the risk factors of
interest to those with one or more of the risk factors.
Returning to our PAF example, one could estimate PAFAGG
for both smoking and birth weight by contrasting children
who had neither of these risk factors, with those who have
one or both of them. The result would be an entirely valid
estimate of the total or net effect of both of these variables
when examined simultaneously.

Adjusted Estimates
These examples address situations where one is interested
in either the individual effect of a single predictor or risk
factor, or where one is interested in the total or combined
effect of several variables or risk factors examined simulta-
neously. Neither involves adjusting individual effects.
However, as we have noted previously, researchers are
also often interested in examining the effect of individual
predictors or risk factors after statistically controlling for
the effect of other variables. This might be due to an inter-
est in statistically controlling for other potential con-
founding effects, or in order to control for the effect of
earlier steps in a more complex process.

Returning to our R2 analogy, in regression this can be
done through a hierarchical multiple regression, where
variables are entered sequentially in multiple steps, exam-
ining the change in R2 at each step. For example, one
might find R2 = .30 for the first step (child sex only), then
Page 5 of 17
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find a change R2 equal to .10 when early childhood
parenting is added in the second step (for a total R2 = .40
after step 2), and finally obtain a change in R2 equal to .05
when adolescent peer behavior is added in the third step
(for a total R2 = .45 after step 3). Note that the estimates of
the change in R2 do not separate direct and indirect effects
associated with that variable. For example, the .10 change
R2 for early childhood parenting reflects both any direct
effect it has on the outcome, as well as any indirect effect
it may have through peer behavior.

The change-in- R2's seen in each individual step sum to
the total R2 obtained in the final step, which is also iden-
tical to the total R2 obtained by entering all three variables
simultaneously in a single step. Combining the different
approaches, one can estimate the total effect of each vari-
able on its own (the simple r2's), the total effect of all var-
iables when examined together (the total R2), and the
unique effect of individual variables controlling for one or
more other variables (the change in R2's). This approach
is valuable in that it allows one to examine the relative
process through which these variables influence the out-
come, in conjunction to their individual net effects (r2's)
and the overall impact of all variables together (R2). Fur-
thermore, if the effect of the predictors on the outcome is
believed to be confounded by other variables, those vari-
ables can be entered in the first step in order to adjust for
those possible confounding effects.

Unfortunately, this last step currently has no equivalent
parallel in PAF analyses. What is needed is a procedure
whereby multiple risk factors can be examined in two or
more steps, with the PAF adjusted at each step for the
effect of variables entered in earlier steps, and where these
sequentially adjusted PAF estimates sum to the total PAF
observed when all variables are examined simultaneously.
This would provide the final, third parallel between R2 as
an indicator of the variance in an outcome associated with
multiple predictors in multiple regression, and PAF as an
indicator of the percentage of cases in a population asso-
ciated with multiple risk factors. The procedure we are
proposing accomplishes this task.

As described above, this procedure is designed to comple-
ment the information obtained by an unadjusted PAF and
PAFAGG. Just like the simple r2, the simple, unadjusted PAF
provides an estimate of the total or net effect of a risk fac-
tor. Similarly, just like the total R2, the PAFAGG provides an
estimate of the net or total effect of a group of variables.
However, this procedure provides additional, valuable
information that supplements both of these. In situations
where one has a causal-sequence of effects, such as mater-
nal smoking leading to increased cases of babies born low
birthweight, leading to increased numbers of children
identified as having MMR, this can provide potentially

interesting process information. Returning to our exam-
ple, whereas the simple PAF for low birth weight indicates
the total effect it has on cases of MMR, the adjusted PAF
reflects how much of that effect is not driven by earlier
processes (i.e., maternal smoking). This can provide valu-
able information for researchers interested in these devel-
opmental, longitudinal processes. Furthermore, if the
effect of the risk factors on the outcome is believed to be
confounded by other variables, those variables can be
entered in the first step in order to adjust for those possi-
ble confounding effects.

Previous techniques for partitioning a PAF sequentially
This approach differs from that proposed by Eide and
Gefeller[15], who have also proposed a method of
sequential PAF estimation. Their strategy was to add risk
factors to a model one at a time and calculate the increase
in the total PAF at each step. They do not suggest ordering
variables based on a causal sequence, but instead propose
that an optimal strategy would be to start with the risk fac-
tor having the largest individual PAF. The resulting esti-
mate for each variable is referred to as a sequential
attributable fraction. For example, they cite a previous study
to illustrate how the PAF for smoking as a predictor of
chronic cough was 41.2%, while the PAF of smoking and
occupational dust exposure together was 51.2%. There-
fore, the sequential PAF for smoking would be 41.2%,
while the sequential PAF for occupational exposure would
be 10.0%.

Eide and Gefeller[15] go on to propose that an average
PAF can be calculated by estimating the mean sequential
PAF for a given risk factor, based upon all possible order-
ings of variables in the model. In this way, if the mean
sequential PAF is calculated for each variable in the
model, the sum of the average PAFs equals the aggregate
PAF obtained when all variables are examined together.
While this addresses the issue of PAFs summing to more
than 1.0, to quote Rowe and colleagues, estimates based
on this approach "which assume complete elimination of
one risk factor while the prevalence of the other risk factor
remains static, do not represent realistic scenarios"[6]
(p.246)

More importantly, while their approach is fairly straight-
forward, it does so by simply attributing the entire
remaining portion of an aggregate PAF to subsequent risk
factors. The result is that it does not allow for interactive
effects (i.e., it assumes there is no interaction between risk
factors as predictors of the outcome). As we will docu-
ment in the final section of this paper, incorporating inter-
actions into PAF estimates solves the seemingly
paradoxical findings that have been noted by Wilcox[16].
By including possible interaction terms, our approach
provides the correct answer to these paradoxical situations
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and directly addresses one of the key concerns with calcu-
lating adjusted PAF estimates.

The proposed sequential partitioning strategy
In contrast to these other approaches, the sequential par-
titioning strategy we propose incorporates two key fea-
tures. First, it recognizes that in multiple risk factor
models one risk factor may in fact lead to a higher rate or
prevalence of a subsequently occurring risk factor. This
results in a risk factor having both a direct effect on the
outcome, as well as indirect effects through increased rates
of subsequent risk factors. Consider maternal smoking
during pregnancy and low birth weight–both are related
to MMR, but smoking has an indirect effect through
increased rates of low birth weight[2]. As such, part of the
effect of low birth weight is in fact due to the indirect effect
of smoking and should be attributed to smoking, not to
low birth weight. In such a model, low birth weight can be
thought of as an intermediate or mediating risk factor. The
need to address this is the very issue raised by Rowe and
colleagues[6] (see the top example in Figure 1).

Second, while on a conceptual level, the issue of direct
and indirect effects is important in determining the
sequential order of variables, as well as in interpreting the
resulting effects, the proposed strategy does not involve
attempting to separate out or differentiate direct and indi-
rect effects. This is an equally important point given con-
cerns raised regarding difficulties in separating direct and
indirect effects. Specifically, the PAF associated with the
first risk factor reflects its total effect. It is a single value
that reflects both any direct effect upon the outcome and
any indirect effect through mediating variables. The
adjusted PAF estimated for any subsequent risk factors
removes the impact of all preceding variables on that risk
factor, but still results in a single estimate that reflects
both any direct effect of that variable upon the outcome
and any indirect effect it may have that is mediated by var-
iables appearing later in the process. Returning to the pre-
vious example, the PAF associated with smoking would
reflect the total impact of smoking–both the effect it has
directly upon MMR, and the indirect effect it has by
increasing the number of children born low birth weight.
The PAF associated with low birth weight would reflect
that portion of the low birth weight effect that is unrelated
to smoking. If a third risk factor was entered after low
birth weight, the PAF for low birth weight would reflect
any direct effect of low birth weight (controlling for smok-
ing) and any indirect effect it has through that third risk
factor (again, controlling for smoking). This also high-
lights the point that if the effect of the risk factors on the
outcome is believed to be confounded by other variables,
those variables can be entered in the first step in order to
adjust for those possible confounding effects.

The proposed procedure begins with a PAF (PAFAGG)
describing the total aggregated effect of all risk factors, and
then partitions this PAF based upon the sequential order
of the effects in the model. Similar to the stratified
approach, the sum of the PAFs obtained is equal to the
PAF that would be obtained by simply placing all individ-
uals with one or more of the risk factors into a "risk"
group, and then calculating a PAF for this aggregate indi-
cator of "risk" relative to those with none of the risk fac-
tors. This is an important characteristic, in that it
emphasizes the strategy is partitioning the total, net effect
of all the risk factors in the model. In addition, similar to
adjustment approaches, it addresses issues that arise from
risk factors being correlated, as well as risk factors having
interactive effects. Finally, based upon the sequence of
effects, this new procedure adjusts the prevalence of risk
factors, pe, not just the RR, at each step.

For simplicity and transparency, we focus on two risk fac-
tors entered in two steps; however, the process can readily
be continued to include additional risk factors or poten-
tial confounds across 3 or more steps. We begin by
describing the procedure for situations where two risk fac-
tors are related/correlated with each other, but do not
interact. We then address the case where two risk factors
are not related/correlated with each other, but do interact.
We then address the situation where the two risk factors
are related/correlated with each other and interact.

It should be noted that given analyses are conducted using
risk ratios, we are specifically referring to an interaction in
the risk-additivity sense[17], meaning that the expected
RR for a person experiencing risk factor A and risk factor B
(assuming no interaction) is equal to the RR for A plus the
RR for B minus 1. This contrasts with the multiplicative
interaction as would be seen in the product term of a
logistic regression, where the expected odds ratio for a per-
son experiencing both A and B (assuming no interaction)
is equal to the odds ratio of A multiplied by the odds ratio
of B (see [17] for a thorough discussion regarding these
distinctions).

Finally, we should once more note that while we have
referred to indirect effects as a basis for establishing a
sequential model, this procedure does not attempt to dif-
ferentiate direct and indirect effects. The partitioned PAF
for any variable contains both any direct effect that varia-
ble has on the outcome, as well as any indirect effect it
may have through subsequent variables in the model,
after removing the effect of any earlier variables in the
model. This is in the same manner that the change in R2

for a variable entered in a multi-step hierarchical multiple
regression reflects the net effect (both direct and indirect
through any subsequent variables) of that variable, after
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removing the variance associated with any variables that
had been entered on a previous step.

Computational illustrative examples
No interaction among risk factors
The first example involves two risk factors, A and B, where
A is believed to lead to increased rates of B, and both are
believed to result in elevated rates of MMR. A and B are
related but have no interaction effect. For example, smok-
ing may lead to higher rates of low birthweight, and low
birthweight may lead to higher rates of MMR; but the
effect of being born low birthweight may be identical for
all children, regardless of whether or not their mother
smoked during pregnancy. Data for this example are pre-
sented in Figures 3 and 4.

Step 1
The first step is to calculate an unadjusted PAF for risk fac-
tor A using the general PAF formula...

where Pe is the proportion of the population exposed to
risk factor A. This is the total relationship between risk fac-
tor A and population rates of MMR. This includes both its
direct effect that is unrelated to B, and the indirect effect it
has through increased rates of B. For this example, the
unadjusted PAF for A is equal to 26.67%.

Step 2
The next series of steps adjust the rate of risk factor B so as
to remove the effect of A upon B. To do this, one first cal-

PAF
Pe RR
Pe RRA = −

+ −
( )

( )
1

1 1
(3)

Two risk factors with no interactionFigure 3
Two risk factors with no interaction.
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culates RRB|A, which is the risk ratio for B based upon
exposure to A. In other words, RRB|A treats the presence of
risk factor B as the "outcome", and estimates the increased
risk of B among individuals with risk factor A, relative to
the risk of B among individuals without A. For this exam-
ple, RRB|A is equal to 1.20, indicating the children who
experience A are 1.20 times more likely to experience B,
than are children who did not experience A.

Step 3
The next step involves creating an adjusted frequency
table by adjusting frequencies among those individuals
with risk factor A in order to remove any effect that A may
have had in terms of increasing rates of risk factor B. In
essence, this adjusted table reflects the predicted frequen-
cies given no association between A and B. RRB|A quanti-
fies the relationship between A and B, in that it indicates

Two risk factors with no interactionFigure 4
Two risk factors with no interaction. (Continued).
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the increased probability that a person will experience B if
they have also experienced A. Therefore, multiplying the
number of individuals with both A and B by the inverse of
RRB|A, while keeping constant both (1) the total number
of individuals experiencing A, and (2) the probability of
having the outcome of interest, removes any effect of A on
rates of B. Mathematically, this process is described in
equations 4 through 7, below.

Referring to Figure 4, the adjusted number of individuals
experiencing both risk factor A and risk factor B (N'AB) is
equal to

where NAB is the original number of individuals with both
A and B. By removing the effect of A upon B, the total
number of individuals in this group would change; how-
ever, the probability of the outcome among these individ-
ual (p'Case|AB) is not affected and continues to be equal to
.030, so that...

p'Case|AB = pCase|AB (5)

where pCase|AB is the unadjusted probability of the out-
come among individuals with both A and B. As reflected
in Figure 4, adjusting for the relationship between the two
risk factors, the expected number of individuals with both
A and B would be equal to 416.67.

Through the adjustment process, the total number of indi-
viduals exposed to A does not change (i.e., continues to
equal 1250), consequently any change in the number of
individuals experiencing both risk factors must be offset
by a corresponding change in the number of individuals
who experience A but not B (N'A_). Mathematically, this is
equal to...

N'A_ = NAB + NA_ - N'AB (6)

where NA_ is the number of individuals in the original
data with A who do not have B. In this example, N'A_
equals 833.333. As before, the probability of developing
the outcome among these individuals does not change...

p'Case|A_ = pCase|A_ (7)

where p'Case|A_ is the adjusted probability of the outcome
among this group, and pCase|A_ is the probability of the
outcome among this group in the original data (i.e.,
among individuals experiencing A but not B, both the
adjusted and unadjusted probability of having MMR is
equal to .020). The effect of this adjustment is to make the
risk ratio for B based upon A equal to one.

Step 4
The adjusted frequency table is then aggregated based
upon exposure/lack of exposure to risk factor B, allowing
an adjusted PAF of B. However, Equation 3 is now inap-
propriate as it would not refer to the original number of
cases. The adjusted PAF (PAF'B) is instead calculated based
on an equivalent form of Equation 3 that has then been
slightly modified in order to reflect the adjusted number
of cases relative to the original, unadjusted number of
cases...

Specifically, Ncase is the total number of cases of the out-
come in the original table, N'case is the total number of
cases in the adjusted table, p'Case|Not B is the probability of
the outcome among those in the adjusted table without
risk factor B, and N is the total number of individuals in
the sample. In effect, the numerator estimates the reduc-
tion in the number of cases based on the adjusted data,
which would be observed if those experiencing B had the
same probability of the outcome as did those who did not
experience B; while the denominator is the number of
cases observed in the unadjusted data. The result is the
proportion of cases in the original, unadjusted data
related to the adjusted data for B. By making this estimate
relative to the unadjusted number of cases, it can be com-
bined with the previously estimate PAF for A, which was
also relative to the unadjusted number of cases.

This results in an adjusted PAF for B equal to 18.33%.
Given the adjustment process removes any relationship
between A and B, the unadjusted PAF for risk factor A
(PAFA) and the adjusted PAF for risk factor B (PAF'B) sum
to the overall, aggregate PAF for A and B combined (PAF-

AGG) if there is no interaction.

Interactive effects
Risk factors have an interaction effect, but are not related/
uncorrelated with each other
These next two examples illustrate how sequential parti-
tioning is applied to data in which the risk factors have an
interaction effect. We will first consider an interaction in a
stratified analysis with risk factors that are unrelated/
uncorrelated with each other. For example, there may be
no association between child gender and maternal smok-
ing (i.e. child gender has no indirect effect on the outcome
through maternal smoking); however, being both male
and having a mother who smoked may result in greater
risk than would be expected given the individual risks of
being male and maternal smoking, alone. As noted previ-
ously, a stratified analysis would be acceptable given the
risk factors are not related to each other. Figure 5 contains
hypothetical data for which an interaction exists between

′ = −N N RRAB AB B A|
1 (4)

PAF
NCase pCase not B N

NCase
B′ =

′ − ′ ×⎡
⎣

⎤
⎦| (8)
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two unrelated risk factors, A and B, as predictors of MMR.
Assuming no interaction, the expected risk ratio among
individuals with both risk factors is equal to...

E(RRAB) = RRA_ + RR_B - 1 (9)

where RRAB is the risk ratio for individuals with both risk
factors, RRA_ is the risk ratio for individuals with A but not
B, and RR_B is the risk ratio for individuals with B but not
A. For the data in Figure 5, the expected RRAB with no
interaction would be 4.00, translating to 20 cases of MMR.
The observed number of cases of MMR for individuals in
this group was 12. The difference, 8 cases, reflects the
interaction effect (see [17] for detail regarding estimation
of interactive effects).

It was previously noted that with non-interacting risk fac-
tors, PAFAGG was equal to the sum of the unadjusted PAF
for A and the adjusted PAF for B. However, in this interact-
ing example, PAFA and the adjusted PAFB sum to 33.33%,
which is 19.05% less than PAFAGG. This 19.05% corre-
sponds to 8 of the 42 cases of MMR, which, given the risk
factors are not related to each other, is also equal to the
magnitude of the interaction effect obtained in the strati-
fied analysis. Consequently, the interaction in a sequen-
tially partitioned PAF (PAFInter) is equal to...

PAFInter = PAFAGG - [PAFA + PAF'B] (10)

And expressed as a number of cases....

NInter = (PAFAGG - [PAFA + PAF'B])* NCases (11)

Two unrelated risk factors with an interactionFigure 5
Two unrelated risk factors with an interaction.
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where NCases is the number of cases of the outcome
(MMR) in the original sample.

Risk factors interact and are related/correlated with each other
The final example considers the situation where there is
an interaction involving risk factors that are related/corre-
lated with each other. For example, (1) maternal smoking
during pregnancy may lead to higher rates of babies born
low birthweight, while low birthweight then leads to
higher risk of MMR (i.e., smoking and birthweight are
related) and (2) the effect of being born low birthweight
on MMR may be different for those babies whose mothers
also smoked, than is the effect of low birthweight for

those babies whose mothers did not smoke (i.e., a smok-
ing × birthweight interaction on MMR). Data for this
example are presented in Figure 6. Applying the sequen-
tial partitioning strategy, PAFA is equal to 14.29%, the
adjusted PAFB is equal to 29.12%, and the PAF for the
interaction is equal to 6.59%. Applying Equation 11, the
PAF for the interaction translates to 4.286 cases of the out-
come.

In contrast, if we examine the same data using a stratified
analysis, we would focus on the 500 individuals with both
risk factors. Using Equation 9 and additional computa-
tion, the expected number of cases of MMR among indi-

Two correlated risk factors with an interactionFigure 6
Two correlated risk factors with an interaction.
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viduals with both A and B is 18.33, while the observed
number is 15, or a difference of 3.33. However, due to the
fact that the risk factors are related/correlated, this value is
biased and therefore does not equal the result obtained in
the sequential approach. Nevertheless, the bias can be cor-
rected by multiplying this result by the inverse of the RR
for the occurrence of B given a person also experiences A
(RRB|A

-1). In other words...

NINT-SEQ = NINT-START RRB|A
-1 (12)

where NINT-SEQ is the number of cases of the outcome that
were associated with the interaction using the sequential
partitioning approach, and NINT-STRAT is the biased esti-
mate of the number of cases of an outcome associated
with the interaction when one inappropriately applies the
stratified method. Applying this correction results in a
value of 4.286 cases, which is the same as obtained
through the sequential partitioning approach. Note that
this correction does not make the stratified approach
appropriate when risk factors are related/correlated. It is
used in this instance simply to highlight a limitation of
stratification in such instances, and to illustrate how the
sequential approach provides a logical and easily under-
standable correction for this issue.

Population shifts: sequential partitioning as a solution to 
an otherwise paradoxical effect
Finally, it is worth noting how the sequential partitioning
procedure addresses issues resulting from population
shifts in the frequencies of risk factors. Wilcox [16]
described how in a study of the effects of birthweight and
altitude upon infant mortality, it is possible for the birth-
weight frequency and mortality distribution to shift based
upon altitude. In effect, the shapes of the curves do not
change, but the optimal birthweight does.

As detailed by Wilcox [16], this can result in a number of
seemingly paradoxical findings. For example, while
increased altitude is associated with lower mean birth-
weight, and while lower birthweight is associated with
increased mortality, altitude has no relationship with
mortality. Furthermore, among infants born low birth-
weight, the mortality rate among high altitude births is
less than the mortality rate among low altitude births. In
contrast, among infants born with a high birthweight, the
mortality rate among high altitude births is greater than
that seen among low altitude births.

To illustrate how the sequential partitioning approach
addresses these issues, an artificial data set was created
reflecting a hypothetical relationship between altitude,
birthweight, and mortality. Artificial data were used in
order to ensure that the only effect associated with altitude
was the shift in optimal values. This would allow the man-

ner in which the partitioning approach addresses such
shifts to be most evident. Specifically, two samples were
created. The first, representing "low altitude" births had a
mean birthweight of 3500 g, which was normally distrib-
uted with a standard deviation of 1000 g. A second sam-
ple, representing "high altitude" births had a mean
birthweight of 3200 g and was also normally distributed
with a standard deviation of 1000 g. Mortality rates per
1000 births was equal to

Where Mort1000 is the mortality rate per 1000 births, WPOP
is the mean birthweight in grams for a given population,
and WX is a child's birthweight in grams. This resulted in a
mortality rate of 1 per 1000 births at the mean population
birthweight, and 518 per 1000 births two and a half
standard deviations from the mean. Weights in each sam-
ple ranged from 2.5 standard deviations below the mean
to 2.5 standard deviations above their corresponding
mean, with each sample containing 1,000,000 births.
Using a criterion for low birthweight as being less than
2500 grams, results are presented in Figure 7. For clarity,
unless otherwise noted, all values referenced in the subse-
quent material are explicitly identified in Figure 7 with
italics and bold blue font.

As expected, high altitude is related to low birthweight
(RR = 1.54) and low birthweight is related to mortality
(RR = 3.84); however, reflecting the paradox, altitude is
unrelated to mortality (RR = 1.00). Furthermore, as
expected, among high altitude births, the effect of low
birthweight upon mortality (RR = .053/.017 = 3.17) is
lower than the effect seen among low altitude births (RR
= 4.85). For example, while not presented in Figure 7, the
mortality rate among children born 1500 g was 70.1 per
1000 high altitude births and 148.4 per 1000 low altitude
births. In contrast, the mortality rate among high altitude
infants born high birthweight is in fact greater than the
mortality rate among low altitude infants born high birth-
weight (90.0 per 1000 high altitude births > 5000 g, and
only 42.5 per 1000 low altitude births > 5000 g). This
exactly reflects the paradox resulting from population
shifts that is noted by Wilcox. However, these seemingly
paradoxical patterns disappear if one adjusts for altitude
prior to examining the effect of birthweight [16].

Fortunately, the sequential partitioning technique incor-
porates just such a procedure, and furthermore, quantifies
the degree to which a PAF may be impacted by this popu-
lation shift. As presented in Figure 8, the overall PAF for
altitude and birthweight is 36.29%. Based on the model
that high altitude leads to lower birthweight, the sequen-
tial partitioning approach results in a PAF for altitude
equal 0%. In other words, the conclusion would be that

Mort
W WPOP

1000
400= −( )e X (13)
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altitude has no relationship with mortality. This in fact
corresponds to the data, and is also the conclusion Wilcox
notes one should draw in situations where this type of
population shift occurs [16].

Furthermore, using the sequential partitioning approach,
the adjusted PAF for birthweight is equal to 28.88%, with
an adjusted risk ratio of 3.99. In contrast, the unadjusted
PAF for birthweight (as reported in Figure 7) is 34.79%,
with an unadjusted risk ratio of 3.84. The difference
between the adjusted values calculated using the parti-

tioning strategy and the raw unadjusted values is also
exactly what one would expect. Specifically, given the
downward shift observed in the distribution for the high
altitude birth and mortality curves, a portion of the high
altitude births will inappropriately be classified as low
birthweight, when in fact within their population, they
are not low birthweight. This results in an unadjusted risk
ratio lower than would be expected were one to include
only the "true" cases of low birthweight, relative to each
population. As this suggests, the unadjusted risk ratio is
slightly smaller than the adjusted RR.

Hypothetical Example Involving Population Shifts-Unadjusted EstimatesFigure 7
Hypothetical Example Involving Population Shifts-Unadjusted Estimates.
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Hypothetical Example Involving Population Shifts–Adjustment CalculationsFigure 8
Hypothetical Example Involving Population Shifts–Adjustment Calculations.
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In contrast, the improper inclusion of population-specific
normal birthweight infants in the low birthweight group
results in an exaggerated PAF for birthweight. As would
therefore be expected, the adjusted PAF for birthweight is
in fact somewhat smaller than the unadjusted PAF for
birthweight. Finally, given the only difference between
low and high altitude births is the shift in the distribu-
tions, the interaction effect (PAF = 7.41%) quantifies the
degree to which the aggregate PAF (36.29%) capitalizes
on the definition of "low birthweight" being misapplied
to a population where this shift has occurred.

It is worth noting that very different conclusions would be
drawn using alternative strategies in which all risk factors
are simultaneously adjusted for all other effects. For exam-
ple, the unadjusted odds ratio for birthweight is 3.84,
while the altitude-adjusted Mantel-Haenszel odds ratio
for birthweight is 4.05. When calculating an adjusted PAF,
Equation Two incorporates the larger, adjusted odds ratio,
but does not consider the impact of altitude upon rates of
low birthweight, and so pe is unchanged. Consequently, a
constant pe and a larger odds ratio will increase the value
for the PAF and lead to the conclusion that birthweight
has a larger effect than it actually does. Similarly, the
unadjusted odds ratio for altitude is 1.00, while the birth-
weight-adjusted Mantel-Haenszel odds ratio for altitude is
.86. A constant pe and a smaller odds ratio will result in a
smaller, in this case negative, PAF. One would therefore
conclude that altitude is a protective factor–again counter
to the correct finding that altitude has no effect.

Summary
It should be noted that this procedure does not address or
prove "causality". The issue of establishing and quantify-
ing causality in epidemiological research is a topic of
ongoing theoretical and philosophical debate [18-23].
Instead, this is a descriptive procedure providing a meas-
ure of the relative population-level effects of multiple risk
factors based on a specific model that may or may not be
true. As noted previously, the results will differ depending
upon the specific order of effects indicated by a model.
The question remains whether a proposed model is or is
not plausible. Nevertheless, the sequential partitioning
strategy proposed here provides a valuable alternative
means for examining the population-level impact of mul-
tiple risk factors unavailable through other techniques
that provide less clear or less meaningful values. The pro-
cedure allows one to partition the overall effect of multi-
ple risk factors based upon the sequence of effects that
exists among the variables. In essence, it allows research-
ers to incorporate into their models the effect that one risk
factor may have in terms of increasing rates of other risk
factors in the model. In addition, if the effect of a risk fac-
tor on the outcome is believed to be confounded by other
variables, those variables can be entered in the first step in

order to adjust for those possible confounding effects.
Consequently, the technique provides a potentially valua-
ble tool for researchers interested in multiple risk factor
models. A Microsoft Excel file [Partitioning PAF Excel
Tool.xls] containing an annotated worksheet for the calcu-
lations and procedures reported here is available online
through the journal website 1.
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