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Abstract
Background: Schistosomiasis infection, contracted through contact with contaminated water, is a global public health 
concern. In this paper we analyze data from a retrospective study reporting water contact and schistosomiasis 
infection status among 1011 individuals in rural China. We present semi-parametric methods for identifying risk factors 
through a comparison of three analysis approaches: a prediction-focused machine learning algorithm, a simple main-
effects multivariable regression, and a semi-parametric variable importance (VI) estimate inspired by a causal 
population intervention parameter.

Results: The multivariable regression found only tool washing to be associated with the outcome, with a relative risk of 
1.03 and a 95% confidence interval (CI) of 1.01-1.05. Three types of water contact were found to be associated with the 
outcome in the semi-parametric VI analysis: July water contact (VI estimate 0.16, 95% CI 0.11-0.22), water contact from 
tool washing (VI estimate 0.88, 95% CI 0.80-0.97), and water contact from rice planting (VI estimate 0.71, 95% CI 0.53-
0.96). The July VI result, in particular, indicated a strong association with infection status - its causal interpretation 
implies that eliminating water contact in July would reduce the prevalence of schistosomiasis in our study population 
by 84%, or from 0.3 to 0.05 (95% CI 78%-89%).

Conclusions: The July VI estimate suggests possible within-season variability in schistosomiasis infection risk, an 
association not detected by the regression analysis. Though there are many limitations to this study that temper the 
potential for causal interpretations, if a high-risk time period could be detected in something close to real time, new 
prevention options would be opened. Most importantly, we emphasize that traditional regression approaches are 
usually based on arbitrary pre-specified models, making their parameters difficult to interpret in the context of real-
world applications. Our results support the practical application of analysis approaches that, in contrast, do not require 
arbitrary model pre-specification, estimate parameters that have simple public health interpretations, and apply 
inference that considers model selection as a source of variation.

Background
Schistosomiasis is a parasitic disease affecting an esti-
mated 200 million people in 76 countries [1]. Humans
become infected with schistosomiasis following contact
with water containing cercaria, the larval stage of the par-
asite. Infection can lead to liver fibrosis and portal hyper-
tension, and may cause anemia [2-4].

Recent studies have shown that the distribution of
human schistosomiasis infections can be explained in
part by spatial variability in water contact, particularly

with respect to differences in cercarial density. For exam-
ple, clusters of Schistosoma hematobium infections in
rural Kenya were identified near water bodies with high
numbers of cercaria-shedding snails [5]. Also, in contrast
to water contact measures that ignore spatial variability
in cercarial density, measures of water contact that adjust
for estimated cercarial density at the site of contact have
shown strong correlations with human infection intensity
[6,7].

Less attention has been paid to temporal variability in
infection risk and to the variability in infection risk from
specific water contact activities. While diurnal variations
in the infectivity of cercaria have been recognized for
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decades, little is known about the variability in infection
risk throughout the transmission season [8]. Li et al.
observed two annual peaks in S. japonicum infection
prevalence in the lower Yantzee basin [9]. In the irrigated
hillsides of southwest China, temporal fluctuations in
both hydrology and snail populations have been docu-
mented, and may yield corresponding variation in infec-
tion risk throughout the transmission season [10,11].
Specific water contact activities may also affect infection
risk, due perhaps to the location in which these activities
are performed and the parts of the body exposed. Several
specific water contact activities have been associated with
the prevalence of S. hematobium infection in Zanzibar
and S. mansoni infection in Cote d'Ivoire [12,13]. How-
ever, neither analysis accounted for the duration or tim-
ing of water contact, and such relationships have not yet
been examined for S. japonicum.

The two studies of S. mansoni and S. hematobium men-
tioned above examined numerous risk factors for infec-
tion using traditional correlation and multivariate
regression techniques. The multivariable regression
approach, while common, imposes an arbitrary model
that limits the interpretation of results [14]. For example,
parameters from such models rarely have simply under-
stood definitions within the context of the subject matter;
they only have meaning within the context of the arbi-
trarily specified model. Multivariable regression models
can also return misleading inference, because the
assumption of an arbitrary model does not allow for
model misspecification, and thus incorrectly estimates
variability [15].

In contrast to multivariable regression, semi-paramet-
ric variable importance measures inspired by parameters
from the causal inference literature have the virtue of (1)
using machine learning algorithms to determine flexibly
how to adjust for potential confounding variables without
requiring arbitrary model pre-specification and (2)
returning a simple and interpretable measure of variable
importance that under assumptions can also yield esti-
mates of the effect of intervention [16]. Such parameters
have been referred to as population intervention parame-
ters [16-19]. This alternative to a traditional regression
analysis is well suited to the exploratory analysis of high-
dimensional data, where one desires to investigate the
independent association of one variable and an outcome
in the presence of many correlated variables.

We analyzed data from a retrospective study in which
1011 individuals reported their water contact during the
2000 S. japonicum infection season in rural China; infec-
tion status in 2000 was also recorded for these individu-
als. Water contact was calculated using the estimated
duration of water contact and the estimated body surface
area in contact with water during the specific water con-
tact activity. We aimed to explore the relative importance

of different types of water contact, defined by both water
contact activity and by the month in which the water con-
tact occurred, on the probability of schistosomiasis infec-
tion. We analyzed these data in three ways: first, by
applying a prediction (machine learning) algorithm; sec-
ond, by using a simple multivariable regression; and third,
by assessing variable importance using a causal inference-
inspired population parameter. We discuss the results of
each method, as well as the limitations of interpretation
within the context of the method used.

Methods
Data Collection
This research was conducted in Xichang County located
in the southwest of Sichuan Province, China. The region
is hilly with irrigated agriculture and historically high
schistosomiasis infection prevalence. Twenty villages
ranging in size from approximately 100 to 300 residents
were selected to participate in a cross-sectional study to
characterize determinants of schistosomiasis infection
[20]. In November 2000, all residents in the 20 villages
were asked to participate in schistosomiasis infection sur-
veys and in an interview to assess basic demographic
characteristics including age, occupation and educational
attainment. Participation rates were high: an estimated
90% of residents participated in these surveys. This
research was conducted in close collaboration with the
Xichang County Anti-Schistosomiasis Station and the
Institute of Parasitic Diseases at the Sichuan Center for
Disease Control. All participants provided verbal
informed consent and human data collection protocols
were approved by the Berkeley Committee for the Protec-
tion of Human Subjects and the Sichuan Institutional
Review Board.

A 25% random sample of residents, stratified by village
and occupation, was interviewed in person in November
2000 about their water contact patterns throughout the
schistosomiasis transmission season. Participants were
asked about eight different activities that involve contact
with irrigation, pond or stream water each month from
April through October: washing clothes or vegetables,
washing agricultural tools, washing hands and feet, play-
ing or swimming, irrigation ditch cleaning and water
diverting, planting rice, harvesting rice and fishing. These
water contact activities will be referred to subsequently as
laundry, tool washing, bathing, swimming, ditch digging,
rice planting, rice harvesting, and fishing, respectively.
Participants were asked how often they performed each
activity each month and for how many minutes each
time, providing an estimate of water contact frequency
and duration. Each activity was assigned an exposure
intensity weight in order to account for differences in
body surface area exposed. Field studies in the selected
villages were conducted to observe which body parts
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were typically wetted for each water contact activity, and
burn charts were used to estimate the percent of total
body surface area accounted for in each exposed body
part [21]. Water contact intensities were assigned as fol-
lows: laundry (0.05), tool washing (0.03), bathing (0.12),
swimming (0.20), ditch digging (0.05), rice planting
(0.05), rice harvesting (0.05) and fishing (0.32). Total body
surface area for adults was estimated to be 1.626 m2, and
for children age 14 and under: 1.130 m2 [21]. For each
activity i in month k, water exposure in minutes-meters2

was calculated:

An individual's water contact for each month was cal-
culated by summing water exposure for all activities that
month. Likewise, an individual's total water exposure for
each activity was calculated by summing the activity-spe-
cific water exposure over the seven months. The total
water contact over the entire period was also calculated.
Because it was determined that only one infected individ-
ual had any water contact associated with rice harvesting,
rice harvesting was excluded from the set of activity vari-
ables. This type of water contact was not excluded from
the monthly water contact variables, or from the total
water contact variables.

At the same time as the water contact surveys, and cor-
responding with the end of the transmission season,
schistosomiasis infection surveys were conducted using
two different stool examination techniques. Participants
submitted stool samples from three different days and
each sample was examined using the miracidial hatch test
according to Chinese Ministry of Health protocols [22].
The Kato-Katz thick smear procedure was also used;
three 41.5 mg slides were prepared from homogenized
stool samples and examined for S. japonicum eggs [23].
Any person with a positive miracidial hatch test or at
least one S. japonicum egg detected through Kato-Katz
was classified as infected. All infected individuals were
referred to local health officials for treatment with prazi-
quantel.

Statistical Analyses
Prediction Algorithm
In our first analysis, we used a machine-learning algo-
rithm to choose the "best" set of infection predictors.
This algorithm formed recursive partitioning, regression,
and classification trees, as implemented in the R function
rpart [24-26]. The algorithm was allowed to choose
among all of the possible water contact variables, as
defined above: activity type, water contact month, and
total water contact. Since the activities are sums over all

months, the months are sums over all activities, and the
total is the sum of all water contact over the entire study
period, including these variables together would not
make sense in an approach attempting to determine asso-
ciations between the variables and the outcome (as in the
analyses conducted later in the paper). However, from the
prediction standpoint, the only concern is the accuracy of
prediction; it makes the most sense, therefore, to include
as many variables as possible in the potential prediction
algorithm, which is why we included all variables. We
note that rpart is just one of many machine learning algo-
rithms that could be used, including algorithms that com-
bine results from several learners [27]. This approach
generalizes to any such routines.

In an attempt to assess the relative "importance" of the
variables in predicting the outcome, we applied a Monte
Carlo re-sampling approach (nonparametric bootstrap)
[28]. The study individuals were randomly re-sampled
with replacement (meaning that one subject could be
sampled more than once, but that all samples were of the
same size), and the rpart tree was recalculated. This
bootstrapping method is a commonly used way of simu-
lating re-sampling from the target population, and can
help to examine how small changes in the data can affect
the prediction model chosen. We performed this re-sam-
pling approach 5000 times, and tabulated the number of
times each variable was chosen by rpart in the prediction
model. Multiple splits on a given variable within the same
rpart fit were counted only once on each iteration.
Multiple Regression
Turning away from the prediction-focused approach, our
second analysis was a main-effects log-linear regression,
in which we also included age category (< 18, 18-29, 30-
29, 40-49, 50+) and village indicator variables as possible
confounders. Here we separated the activity types from
the months into two separate models, and excluded total
water contact from both models. We could not use log-
linear binomial models because they generated predicted
probabilities that exceeded one, so we used instead Pois-
son log-linear models.

In both models, Y is the (binary) outcome, V is the vec-
tor of village and age category indicators, and γ is the vec-
tor of coefficients associated with V. In Model 1, Wactivity
is the vector of activity type water contact variables, and
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βactivity is the vector of activity type coefficients; in Model
2, Wmonth is the vector of monthly water contact variables,
and βmonth is the vector of month coefficients. Because we
did not wish to rely upon the Poisson assumption for esti-
mating our standard errors and deriving inference, we
instead calculated robust standard errors using the
Huber/White sandwich estimator [29,30]. Regression
estimates were obtained using the glm command in Stata
[31].
Variable Importance
Our third (semi-parametric) approach estimated a so-
called variable importance (VI) parameter which com-
pares the current distribution of the outcome to its distri-
bution under a theoretical experiment where the variable
of interest is set to the lowest risk. In our data, this is
equivalent to comparing the observed infection preva-
lence distribution to the distribution of infection in a the-
oretical experiment in which the entire study population
never experienced a particular type of water contact.

Assume the current variable of interest is A, the out-
come is Y, and the confounders - in this case, all other
water contact variables except A - are W, and V are the
additional confounders (age category and village). Our VI
estimate is inspired by the following causal parameter:

Ya represents the outcome if - possibly contrary to fact -
everyone had exposure A = a. (Outcomes defined in such
a way have been referred to as counterfactuals [32].) In
the case of our binary outcome variable, E(Y) is estimated
as the current disease prevalence in our target popula-
tion, which is estimated as the average of the observed Y
values.

If Y is binary (yes/no) - as it is in our case - this parame-
ter can be interpreted as the proportional change, relative
to current rates, in the prevalence of schistosomiasis in
our target population if everyone were unexposed to the
particular risk. This parameter is akin to the attributable
risk, and its magnitude is both a function of the adjusted
association of A and Y and of the prevalence of exposure.
For example, removing exposure would have little effect
on the value of this causal parameter if the exposure in
question were very rare, even if it were strongly related to
the disease outcome. Conversely, removing a common
exposure that only modestly increased the risk of disease
could have a much larger impact on the parameter's
value.

With regards to the distribution of the data alone - that
is, without assuming the necessary identifiability condi-
tions for making causal inference (no unmeasured con-
founders and independence of counterfactual outcomes,

or the so-called stable unit treatment value assumption -
SUTVA [33]) - our VI measure is an estimate of the fol-
lowing:

The numerator is interpreted as the mean predicted
value of Y assuming one sets the exposure to 0 (A = 0
means unexposed) but keeps the other variables at their
observed values. EW, V in the numerator denotes that this
mean predicted value of Y is also taken over all W and V.

The denominator was estimated by simply taking the
mean of the Y values. To estimate the numerator, we used
the so-called inverse-probability-of-censoring-weighted
(IPCW) estimator:

Here  is an estimate of the probability

that A = 0 given the values of the covariates Wi and Vi for

subject i. The form of this estimator makes obvious

another assumption, which has been called positivity or

experimental treatment assignment (ETA) assumption,

which in this case says that P(A = 0|W, V) > 0 in the data-

generating distribution [34-36].
The IPCW estimator is a type of weighted average of

the Y values, in which the weights are proportional to the
probability of being unexposed (Ai = 0) given the other
covariates (Wi and Vi). The IPCW estimator relatively up-
weights the disease outcomes of unexposed individuals
with covariates underrepresented within the unexposed
group, which has the effect of adjusting for confounding
bias. Because P(Ai|Wi, Vi) is unknown in this case, we
used a machine-learning algorithm (rpart) to estimate a
model for this probability.

A VI estimate was calculated for each variable of inter-
est. Specifically, we define the VI estimate for each water
contact activity as follows:
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and V represents the age category and village covariates.
The VI estimate for each month is defined equivalently,
with Wmonth in place of Wactivity. As in the logistic regres-
sion analysis, total water contact was excluded; it would
not be meaningful to estimate EW, V E(Y|A = 0, W, V) for A
= total water contact, since none of the other water con-
tact variables could be nonzero if total water contact were
equal to zero.

To derive our inference, we estimated standard errors
using the non-parametric bootstrap with 5000 iterations.
Specifically, participants were re-sampled with replace-
ment, producing 5000 bootstrap samples of size 1011. For
each of these 5000 samples, VI estimates were calculated,

including a re-calculation of . The stan-
dard deviation across these 5000 estimates was then cal-
culated and used for inference. Because the model for
P(Ai = 0|Wi, Vi) was not pre-specified, this method of cal-
culating the standard error will account for both sam-
pling variability (by re-sampling) and the variability
introduced by model uncertainty with regards to P(Ai =
0|Wi, Vi) (by allowing for changes in the model for

 at each iteration).

Results
Figure 1 shows the full data rpart tree formed by allowing
the machine learning algorithm to choose splits from the
pool of all water contact variables. April, May, June, tool
washing, ditch digging, bathing, and rice picking were the
water contact variables chosen for classification.

When the data were re-sampled with replacement,
Table 1 lists the number and percentage of times (out of
5000) each variable was chosen for classification in a

given rpart tree. The covariates are ordered according to
the number of times they were chosen to be part of each
rpart tree, from largest to smallest. This method identi-
fied April (92%), June (92%) and total water contact (86%)
as the most frequently chosen predictors of infection sta-
tus within the bootstrapping algorithm. The six variables
chosen for classification in the original full data tree (Fig-
ure 1) are among the top seven identified most frequently
for use in the bootstrap sample rpart trees. However,
total water contact, chosen 86% of the time in the boot-
strap samples, was not part of the original full data tree.

Tables 2 and 3 show results from the log-linear regres-
sion models, along with the prevalence of each type of
water contact in our sample. The correlations between
the various water contact variables range from -0.02
(between April and August) to 0.68 (between July and
August) for the monthly variables and from -0.15
(between swimming and bathing) and 0.28 (between rice
picking and bathing) for the activity variables. The

reported relative risks were calculated as , where

 is the estimated regression coefficient and  is the
mean water contact across all subjects for water contact
variable i. This relative risk therefore reports the risk of
having the mean value for water contact variable i versus
the risk of having no water contact of type i. As previ-
ously mentioned, the month and activity variables were
separated into two different models, which is why the
results are reported separately. The estimates in Tables 2
and 3 are also adjusted for age category and village. We
do not report relative risks associated with age category
and village because the effects of these covariates were
not the focus of this study.

In the log-linear regression framework, none of the
monthly water contact variables were found to have
strong associations with the outcome. All month-specific
relative risk estimates are very close to one and have 95%
confidence intervals that include one. This implies that
the risk of having a positive stool sample when these vari-
ables are at their mean values is indistinguishable from
the risk when there is zero water exposure during these
months. Similarly, the relative risks associated with the
water contact activity types are also all very close to one,
and almost all have 95% confidence intervals that include
one. The tool washing-specific relative risk has a 95%
confidence interval that does not cross one; the estimated
relative risk is still extremely close to one, however,
implying almost no detected difference in risk. These
results are of course only interpretable in the context of
the regression models used.

Tables 4 and 5 show VI estimates for the two sets of
water contact variables. As in the log-linear regression
framework, the monthly water contact variables were
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Figure 1 Full data rpart classification tree.
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analyzed separately from the water contact activity vari-
ables. As previously explained, the VI estimates were
adjusted for age category and village by including these
variables in the estimation of P(Ai|Wi, Vi). (In similarity
with the regression analysis, we did not calculate VI esti-
mates for age category and village.) Confidence intervals
and p-values based on the bootstrap-derived standard
errors are also reported. In contrast to the log-linear
regression results, which identified no detectable
adjusted associations with the outcome among the
monthly water contact variables, July's VI estimate indi-
cates a strong adjusted association. If one interprets this

VI estimate as an estimate of , it implies that elimi-

nating water contact in July would reduce the prevalence
of schistosomiasis measured in the study by 84%, or from
0.3 to 0.05. The 95% confidence interval for this estimate
indicates a range of 78% to 89%. The prevalence of expo-
sure in July is 0.77, which along with August is the highest
of any month. The VI estimates for all other months are
near one and have 95% confidence intervals that include
one (many of which are quite broad). No other month,
therefore, has a detectable association with the outcome.

In terms of VI, no other type of water contact had as
large an impact on infection risk as July water contact.
Tool washing and rice planting were the only two activi-
ties with a discernable impact on infection risk - all other
activity types (Table 4) have VI estimates near one and
95% confidence intervals that include one. Both of the VI
estimates associated with tool washing and rice planting,
in contrast, have 95% confidence intervals that do not
cross one. Interpreting the VI results once again as esti-

mates of  would imply an estimated 12% reduction

in the prevalence of schistosomiasis by eliminating tool
washing and an estimated 29% reduction by eliminating
rice planting. The associated 95% confidence intervals for
these estimates imply a range of 3% to 20% for tool wash-
ing and 4% to 47% for rice planting. As shown in Table 5,
the prevalence of water exposure due to tool washing in
our study population was 0.20, while the prevalence of
water exposure due to rice planting was 0.65.

Conclusions
The three analysis approaches used here are all attempts
to answer the same research question: what is the best
estimate of the contribution of one explanatory variable
to the mean outcome in the presence of other correlated
explanatory variables? We specifically hoped to see how
various types of water contact affected the probability of

E Y
E Y
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( )

0

E Y
E Y
( )
( )

0

Table 1: Number of times out of 5000 that each water 
contact type was chosen by rpart to form a data-adaptive 
classification tree.

Water contact type Number of times 
chosen

Percentage

April 4608 92.2%

June 4602 92.0%

Total 4283 85.7%

Tool washing 4067 81.3%

Ditch digging 3825 76.5%

Rice planting 3677 73.5%

May 3652 73.0%

September 3326 66.5%

July 3181 63.6%

Bathing 3073 61.5%

October 2787 55.7%

Swimming 2481 49.6%

Laundry 2133 42.7%

August 1892 37.8%

Fishing 69 1.4%

Data to form each tree were obtained by re-sampling the 1011 
individuals with replacement.

Table 2: Relative risk estimates for water contact by month.

Month Prevalence Relative Risk 95% CI Std. error p-value

June 0.75 1.03 (0.98, 1.09) 0.03 0.20

October 0.58 0.95 (0.89, 1.03) 0.04 0.22

May 0.75 1.04 (0.97, 1.13) 0.04 0.25

April 0.73 1.04 (0.95, 1.14) 0.05 0.45

August 0.76 1.03 (0.94, 1.13) 0.05 0.51

September 0.70 0.98 (0.89, 1.07) 0.05 0.64

July 0.77 0.98 (0.91, 1.06) 0.04 0.68

These estimates are based on a main-effects log-linear regression, and are also adjusted for age category and village. The relative risks reflect 
the difference in risk of infection between exposure at the mean value for that month and zero exposure.
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a positive stool sample, adjusting for other types of water
contact, age, and village.

The use of machine learning algorithms for model
selection is attractive, particularly because the model
does not have to be pre-specified; this means estimating
the association parameters while acknowledging that
very little is typically known about the form of the model.
A comparison of Figure 1 and Table 1, however, provides
an example of how simply determining whether or not a
variable is chosen by a machine learning algorithm (such
as rpart) is not a particularly robust procedure for defin-
ing the importance of a variable. Given a finite sample
size and highly correlated predictors - as we have in our
data - small changes in the data often result in large
changes in the variables chosen as predictors. This can
occur even as the fidelity of prediction is nearly
unchanged; there are often several sets of variables in var-
ious functional forms that can provide nearly identical
accuracy of prediction. This issue is partially what
inspired the idea of bagging or bootstrapping these
machine learning algorithms, such as in the case of ran-
dom forests [37]. For example, our full data tree could
lead us to conclude that total water contact is less predic-
tive of a positive stool sample than the specific activity
and month variables chosen to be part of the tree. Table 1,

however, would lead us to conclude that total water con-
tact is one of the top three most predictive variables - and
therefore more "important" than four out of the six vari-
ables identified in the full data tree. Due to this instability,
machine learning algorithms alone provide sub-optimal
information for determining the importance of variables.

The actual best set of predictor variables is a function
of the type of model, the method for constructing candi-
date models, and the method used to choose the so-called
tuning parameters. Our results here therefore do not gen-
eralize to all machine learning routines - such as, for
example, the Deletion/Substitution/Addition algorithm
[38], POLYCLASS [39] or random forests [37]. Generally,
as implied by the results displayed in Table 1 and Figure 1,
prediction algorithms are not constructed to provide any
easily interpretable estimates of each water contact vari-
able's contribution to the probability of a positive stool
sample, which is ultimately what we were trying to inves-
tigate. Machine learning algorithms can be applied most
effectively to answering our question of interest when
used within an estimation framework whose parameters
are defined independently from the specific model cho-
sen by a given algorithm (such as rpart). This semi-para-
metric approach, of which our VI analysis is an example,
contrasts dramatically with estimating simple, parametric

Table 3: Relative risk estimates for water contact by activity.

Month Prevalence Relative Risk 95% CI Std. error p-value

Tool washing 0.20 1.03 (1.01, 1.05) 0.01 < 0.01

Laundry 0.22 1.02 (1.00, 1.05) 0.01 0.08

Swimming 0.21 1.02 (1.00, 1.05) 0.01 0.10

Ditch digging 0.48 0.99 (0.98, 1.00) 0.01 0.16

Fishing 0.02 1.01 (1.00, 1.02) 0.01 0.17

Bathing 0.49 0.98 (0.92, 1.04) 0.03 0.46

Rice planting 0.65 1.03 (0.94, 1.13) 0.05 0.52

These estimates are based on a main-effects log-linear regression, and are also adjusted for age category and village. The relative risks reflect 
the difference in risk of infection between exposure at the mean value for that month and zero exposure.

Table 4: Variable importance estimates for water contact by month.

Month Prevalence VI estimate 95% CI Std. Error p-value

July 0.77 0.16 (0.11, 0.22) 0.18 < 0.01

August 0.76 1.70 (0.48, 6.02) 0.66 0.42

May 0.75 1.18 (0.32, 4.30) 0.66 0.81

October 0.58 1.05 (0.60, 1.84) 0.28 0.86

June 0.75 0.97 (0.27, 3.56) 0.66 0.97

September 0.70 1.01 (0.41, 2.49) 0.46 0.98

April 0.73 1.00 (0.40, 2.50) 0.46 1.00

The prevalence of water contact for each month in our study population is also shown.
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regression models and reporting the resulting coefficients
as association parameters (such as the relative risks
reported in Tables 2 and 3). Though such regression anal-
yses can produce parameters with relatively straightfor-
ward public health interpretations, the interpretations
only remain straightforward if the pre-specified regres-
sion model is correct; any interpretation of the estimates
obtained must implicitly assert the truth of the model
used, though there is very rarely any justification for a
specific parametric model's a priori truth. In addition, the
lack of data-adaptive procedures can sacrifice power by
resulting in much larger residual variability than
approaches that use the data to fit the models. Tables 2
and 3, for example, show that under the constraints of the
regression model, even the coefficients with 95% confi-
dence intervals that did not cross one yielded relative
risks very close to one, suggesting little contribution to
the variability of the outcome. Whether this is a true
result, however, or merely reflective of a poorly chosen
model, is impossible to assess. The regression approach,
though common, is therefore a dangerous choice as a
basis for making causal inferences. Interpretation of
parameters (conditional relative risks) in the context of a
misspecified model are also of dubious value, since it is
difficult to know what such interpretations really mean.
This is true of the innumerable regression approaches
reflexively used throughout observational epidemiology
and other empirical fields.

Though one data analysis cannot justify the global use
of an analysis technique, at least there is some hope that
our approach here has found potentially interesting asso-
ciations. Specifically, the importance of July water contact
in our VI results - not detected by the regression analysis
- could suggest temporal variability in infection risk dur-
ing the infection season. This could be due to a combina-
tion of factors, since infection risk depends not only on
water contact intensity but also on cercarial concentra-
tion in that water. A summer peak in cercarial concentra-
tion was observed in a number of villages in this same
area in 2001 using a mouse bioassay procedure through-

out the infection season [40]. The peak occurred in
August, not July, but year-to-year variability in cercarial
concentration can be expected due to seasonal fluctua-
tions in snail populations and agricultural activities
driven by changes in rainfall, temperature, and humidity.
Temporal variability in infection risk can also be influ-
enced by seasonal changes in activities known to be asso-
ciated with infection, such as swimming, which may
increase during summer months when school is not in
session and ambient temperatures are high. In addition,
prior work has documented seasonal fluctuations in
hydrology which correspond to differences in infection
patterns between schistosomiasis endemic regions within
Sichuan province [11]. One must consider, however, that
this dataset has a number of limitations. The retrospec-
tive nature of the water contact surveys calls into ques-
tion the accuracy of recall - particularly given the
relatively long period of time (seven months) during
which study participants were asked to recount their
water contact activities. The analysis also relies on the
definition of water contact, which as previously described
includes an estimate of the body surface area believed to
be in contact with water during certain activities. We are
additionally limited by the need to analyze the monthly
water contact and water contact activity variables sepa-
rately; while it would have been ideal to consider the 56
activity type-by-month variables, the number of covari-
ates is simply too large in comparison with the sample
size for any technique to single out individual contribu-
tions. We therefore chose to simplify the set of variables
by considering activity separately from month, thus pro-
viding some power to detect adjusted associations.

While the results of this analysis are far from conclu-
sive, they nonetheless suggest possibly fruitful areas for
future research. If a high-risk period in the schistosomia-
sis infection season could be detected in something close
to real time, new prevention options would be opened.
Recent advances in detecting schistosome cercariae in
water using PCR techniques could potentially provide
such a tool [41]. The notion of changing from a surveil-

Table 5: Variable importance estimates for water contact by activity type.

Month Prevalence VI estimate 95% CI Std. Error p-value

Tool washing 0.20 0.88 (0.80, 0.97) 0.05 0.01

Rice planting 0.65 0.71 (0.53, 0.96) 0.15 0.03

Swimming 0.21 0.96 (0.87, 1.06) 0.05 0.38

Ditch digging 0.48 0.94 (0.80, 1.10) 0.08 0.42

Bathing 0.49 1.09 (0.88, 1.35) 0.11 0.42

Laundry 0.22 0.97 (0.89, 1.06) 0.04 0.45

Fishing 0.02 1.00 (0.98, 1.02) 0.01 0.83

The prevalence of water contact for each month in our study population is also shown.
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lance system that relies on episodic human infection sur-
veys to one based on water monitoring has many
attractions, including the likelihood of lower cost. Water
monitoring is also an appealing option in areas where
schistosomiasis re-emergence has occurred or is sus-
pected [42].

Though we compare here three specific analysis tech-
niques, we note that many different machine learning
algorithms (other than classification trees) are available,
different regression models could be specified, and differ-
ent approaches to estimating our VI parameter could be
used (including G-computation and Targeted Maximum
Likelihood) [43,44]. The general principals contrasting
these methods remain the same, however, and are impor-
tant in the larger issue of estimating the independent and
potentially causal association of risk factors in data sets
with large numbers of covariates. Prediction (machine
learning) algorithms are very well-designed to provide
optimal prediction and to balance the variance and bias
in the predicted value (the estimate of E(Y|A, W, V)); they
are not optimal for determining the contributions of indi-
vidual variables directly. This is particularly obvious since
small changes in the data can result in large changes in
the variables chosen. In contrast, the standard regression
model approach has a nicely interpretable parameter, but
is entirely dependent upon the correctness of the model
specified. The definition of the parameter itself is also
generally tied to the form of the model - for example,
adding a multiplicative interaction term into a regression
model changes the meaning of the main effect term.
Thus, the definition of a given parameter is only useful if
the model is correct, and that parameter's interpretation
changes as other variables are added to or removed from
the model. In reality, such models are never correct, and
there is no mechanism for allowing them more flexibility
(such as through machine learning algorithms) to reduce
bias as sample size grows. These issues expose the need
for a meaningful parameter, one whose estimation can
capitalize on the virtues of the asymptotic bias-reduction
of machine learning algorithms and whose definition is
not dependent upon the model chosen by these algo-
rithms. The VI parameter we use is an answer to this
need. We employ a machine learning algorithm to esti-
mate the parameter, but differences in the model chosen
by the algorithm do not change the definition of the
parameter.

The semi-parametric approach is evolving, and recent
advances promise to increase the power of this combina-
tion of machine learning and causal inference methods.
We do not necessarily advocate the details of the semi-
parametric VI algorithm used here - we in fact used a rel-
atively inefficient method, and more refined methods are
available to target model selection towards optimizing

the particular parameter of interest [45]. We simply argue
that it is possible to devise estimation strategies that,
given unavoidable assumptions, can converge to unbiased
estimates of the causal effects defined as sample size
grows. In addition to the aforementioned alternate
approaches for estimating our VI parameter, one can also
use so-called asymptotically linear estimators; these are
normally distributed, and in many cases simple standard
errors based on this normality can be derived if one
wishes to avoid re-sampling-based techniques (i.e. the
bootstrap).

Risk factor epidemiology has for too long relied upon
inherently biased techniques, particularly for observa-
tional data. There is no longer any reason to do so; the
bias-reduction flexibility of semi-parametric models can
be combined with estimation of simple and frankly more
meaningful parameters in public health. We suggest
using techniques that (1) define parameters with conve-
nient public health interpretations, (2) use flexible, data-
adaptive routines that do not pre-suppose arbitrary and
scientifically unjustifiable models, and (3) employ honest
inference that accounts for all the aspects of variation,
including model selection.
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