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Abstract

Sufficient causes of disease are redundant when an individual acquires the components of two or more sufficient
causes. In this circumstance, the individual still would have become diseased even if one of the sufficient causes
had not been acquired. In the context of a study, when any individuals acquire components of more than one suf-
ficient cause over the observation period, the etiologic effect of the exposure (defined as the absolute or relative
difference between the proportion of the exposed who develop the disease by the end of the study period and
the proportion of those individuals who would have developed the disease at the moment they did even in the
absence of the exposure) may be underestimated. Even in the absence of confounding and bias, the observed
effect estimate represents only a subset of the etiologic effect. This underestimation occurs regardless of the mea-
sure of effect used.
To some extent, redundancy of sufficient causes is always present, and under some circumstances, it may make a
true cause of disease appear to be not causal. This problem is particularly relevant when the researcher’s goal is to
characterize the universe of sufficient causes of the disease, identify risk factors for targeted interventions, or con-
struct causal diagrams. In this paper, we use the sufficient component cause model and the disease response type
framework to show how redundant causation arises and the factors that determine the extent of its impact on epi-
demiologic effect measures.

Introduction
Sufficient causes of disease are redundant when an indi-
vidual acquires the components of two or more suffi-
cient causes (SCs), so that even if one of the SCs had
not been acquired, the individual still would have
become diseased. Redundancy occurs because disease
can result from one of multiple (sufficient) causes, as
affirmed by the sufficient component cause model used
in epidemiology. When any individuals under study
have redundant SCs, the etiologic effect of the exposure
may be underestimated. The etiologic effect is the abso-
lute or relative difference between the proportion of the
exposed who develop the disease by the end of the
study period and the proportion of those individuals
who would have developed the disease at the moment
they did even in the absence of the exposure [1-3]. This
occurs in the best-case scenario when confounding and
bias are absent and regardless of the effect measure

used. To some extent, individuals with redundant SCs
are always present, and under some circumstances,
redundancy may make a true cause of disease appear to
be not causal. This problem is particularly relevant
when the researcher’s goal is to characterize the uni-
verse of SCs of the disease, identify risk factors for tar-
geted interventions, or construct causal diagrams.
The idea that causes can be redundant has been dis-

cussed extensively in philosophic and legal literature on
causation. Our perspective is that as epidemiologists,
our goal is to identify all causes of disease regardless of
when, how or how often they act. Redundancy of SCs of
disease presents a barrier to this goal. This issue has
been conceptually described by Mackie in the context of
philosophy [4] and acknowledged by Rothman in his
seminal SC paper [5]. Mackie used illustrative concep-
tual examples to describe redundancy of SCs and how it
arises, but did not connect these to the impact on effect
measures [4]. In their work on the definition and inter-
pretation of attributable fractions and probability of cau-
sation, Greenland, Robins and Beyea analytically
(through mathematical formula, and conceptual and
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numeric examples) demonstrated the impact of redun-
dant causation on effect measures used in epidemiology
[1-3,6,7]. In the most recent version of Modern Epide-
miology, Greenland, Rothman and Lash described how
redundancy arises using a simple SC example and noted
its implication for estimating an etiologic effect ([8]).
Though a great deal of this work was published over

20 years ago, we suspect that most epidemiologists don’t
appreciate the potential impact of redundant SCs. It is
rarely discussed in epidemiologic methods and to our
knowledge, has not been discussed in any published
applications. Yet, we believe redundancy has important
implications for etiologic research and causal thinking,
and perhaps should be carefully considered by epide-
miologists as are confounding and bias.
While the work of Mackie [4] and Greenland and

Robins [1-3,7] provide the backbone of our understand-
ing of redundancy of SCs (and should be read for a full
understanding of this phenomenon), it is not our inten-
tion to review their work. Rather, we hope to make this
discussion more comprehensive and more accessible to
epidemiologists by reframing and connecting the phe-
nomenon described by Mackie to Greenland and
Robins’ analyses. To do this, we will: (1) use SCs to
describe how redundancy of SCs arises and the factors
that influence the proportion of redundant individuals
in a population, (2) adapt the disease response type
methodology (which has been used in epidemiology in
various forms to explicate the effects of confounding [9],
mediation [10-12] and effect modification [13-16]) to
show how redundancy of SCs impacts epidemiologic
effect measures, and (3) use a simple numeric example
to show how the relative effect estimates calculated in
epidemiologic studies underestimate the full exposure
effect, potentially obscuring causal identification.

Terminology
In published philosophic, legal and epidemiologic litera-
ture, and through our personal interactions, we have
encountered several names for the situation in which an
individual acquires more than one cause of disease.
These names include over-determination, pre-emption,
trumping, double-jeopardy, over-lap bias, and acceler-
ated occurrence (For example, see [4,7,17]). In addition,
this situation is related to several terms used in discus-
sions of interaction (e.g. parallelism, competition and
cooperative-competitive action) [13,18]. However, we
find these terms to be limited because they are used
narrowly to describe particular ways that redundancy of
SCs can arise, are uncommonly used, or are undocu-
mented in the literature. Thus, we use “redundancy of
sufficient causes” as a descriptive umbrella term to
encompass all sub-types of redundancy. The term
“redundant causation” is commonly used in philosophic

discussions of causation. For example, Lewis (page 193,
[19]) stated:

“Suppose we have two events c1 and c2, and another
event e distinct from both of them; and in actuality
all three occur; and if either one of c1 or c2 had
occurred without the other, then also e would have
occurred; but if neither c1 or c2 had occurred, then e
would not have occurred. Then I shall say that c1
and c2 are redundant causes of e.”

Going forward, we will use the term “redundancy” for
simplicity. However, we will note when we first describe
a particular type of redundancy that has a documented
name. Our intention is not to coin a new term, but
rather to simplify our discussion of this phenomenon.

The sufficient-component cause model
Modern epidemiology is fundamentally based on the
notion that for most diseases, an individual can
develop a disease from one of many possible SCs, each
of which consists of several components working
together. This model of disease causation, known as
the sufficient component cause (SCC) model [4,5], sti-
pulates “constellations” of components. It states that
although none of the components in any given constel-
lation can cause disease by itself, each makes a non-
redundant, necessary contribution to complete a causal
mechanism. Thus, each component is a cause of dis-
ease; the SSC model specifies the circumstances in
which each causal component acts. A constellation of
components that is minimally sufficient to cause dis-
ease is termed a SC; SCs are often depicted as “causal
pies”. As an example, Figure 1: Tier 1, depicts five SCs
of disease. An individual may develop the disease by:
(1) acquiring both E and U1; or (2) acquiring both U2

and U3; or (3) acquiring both U1 and U4; or (4) acquir-
ing U5 alone; or (5) not acquiring E and acquiring U6

(see endnote 1).
In our work, we conceptualize an expanded SCC

model, in which tiers of SCs are connected to specify
how relationships arise [20]. In these SCC models, we
include all SCs of the disease (e.g. Figure 1: Tier 1), as
well as any SC that contributes to an association
between any causal components of the disease (e.g. Fig-
ure 1: Tier 2). Our approach is based on the premise
that associations between any two components arise
either because one component causes the other or
because they are both caused by a third component.
This premise is consistent with the definition of a causal
directed acyclic graph (DAG), a type of causal diagram
in which an arrow between two variables represents a
causal effect and all common causes of each pair of vari-
ables are specified [21].
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We create the simplest (i.e. most minimal) causal
model to address the question at hand by extending the
principles of DAGs and the SSC model. Thus, if there
are no associations between the components of the SCs
of disease, only one tier of SCs would be shown. In Fig-
ure 1, SCs 1 to 5 are labeled Tier 1 causes. We also
show four Tier 2 causes. E is caused by acquiring both
C1 and X1, component U1 is caused by acquiring
both C2 and X2, component U3 is caused by acquiring
both C1 and X3 and component U5 is caused by acquir-
ing both C2 and X4. In this example, an association
between E and U3 arises from a shared component
cause, C1. To reflect that C1 is not sufficient to cause E
and U3, we include X1 and X3 as its causal partners; C1

requires X1 to cause E and requires X3 to cause U3.
Likewise, an association between U1 and U5 arises from
a shared component cause, C2. To reflect that C2 is not
sufficient to cause U1 and U5, we include X2 and X4 as
its causal partners; C2 requires X2 to cause U1 and
requires X4 to cause U5. Note that because C1 leads to
an association between the exposure and a component
cause of disease that does not work with the exposure,
C1 causes confounding; C1 is a common cause of disease
(via U3) and exposure, thus causing confounding. While
C2 leads to an association between U2 and U5, C2 does
not cause confounding. Rather, there is an association

between the causal partner of the exposure and a com-
ponent cause that does not work with the exposure.
While this type of association does not bias effect esti-
mates, it has important implications for redundancy that
we discuss later.
Redundancy must be described with respect to a cau-

sal component of interest, i.e. the exposure of interest.
We will refer to the exposure of interest as “the expo-
sure” and people who have acquired the exposure as
“exposed” (and is reflected by “E” in Figures 1 and 2).
Likewise, we refer to the disease of interest as “the dis-
ease” and people who have developed the disease as
“diseased” or “cases”. In addition, we refer to any other
component causes of the SCs simply as “components”
(e.g. in Figure 1: U1, U2, X1, X2, etc.). Below, we use
SCC models to illustrate how redundancy arises. The
consequences of redundancy will be discussed later in
the paper when we discuss causal contrasts.

How redundancy arises
Redundancy occurs at the level of the individual; by the
end of some defined follow-up period, an individual has
acquired more than one SC of the disease. From the
perspective of the SCC model, redundancy can arise
from independent or dependent processes, which is
determined by whether an individual’s probability of

Tier 2: 

Tier 1: 

U1E U3U2 U5

Sufficient cause 1 Sufficient cause 2 Sufficient cause 4 

DISEASE 

U6EC

Sufficient cause 5 

U4U1

Sufficient cause 3 

X1C1 X2C2 X3C1 X4C2

Figure 1 Sufficient component causal (SCC) model with five sufficient causes of disease. Disease may result from: (1) the presence of both
E and U1; or (2) the presence of both U2 and U3; or (3) the presence of both U1 and U4; or (4) the presence of U5; or (5) the absence of E (i.e.
the complement of E, EC) and the presence of U6.
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acquiring one SC is independent of or dependent on
his/her probability of acquiring another SC. Redundancy
can be considered “independent” when the causal part-
ners of the exposure: (1) do not participate in any SC
that does not include the exposure (i.e. the causal part-
ners are “exclusive”) and (2) do not share any common
causes with components that do not work with the
exposure. Because some individuals will acquire the
components of more than 1 SC by chance, this type of
redundancy is inevitable; it will always occur and is una-
voidable (assuming there is more than one SC of a dis-
ease in a population). Redundancy can be considered
“dependent” when at least one causal partner of the
exposure: (1) is also a component in an SC that does
not include the exposure (i.e. at least one causal partner
is “non-exclusive”) or (2) shares a common cause with a
component that does not work with the exposure. This
type of redundancy does not always occur, but rather is
dependent on the causal model structure. Below, we
describe examples of independent and dependent
mechanisms of redundancy.

Redundancy as a result of independent processes
In Figure 2: Independent Mechanism, redundancy arises
from independent processes. By this we mean: 1) the
causal partner of the exposure (U1) is exclusive (i.e. U1

works exclusively with E to cause disease,) and 2) U1

does not share an antecedent component cause with any
other component cause of disease. Thus, there are no
Tier 2 causes shown. Assuming these are the only SCs
of the disease, redundancy occurs if any exposed indivi-
dual acquires U1, U2, and U3 during the study period.
Since there are no shared components between the SCs,
one must be completed before the other [(E and U1) are

acquired before (U2 and U3), or vice versa]. This type of
redundancy has been described as pre-emption [17] and
accelerated occurrence [7] (see endnote 2).

Redundancy as a result of dependent processes
In Figure 2: Dependent Mechanism A, redundancy
arises from dependent processes. The causal partner of
the exposure (U1) is non-exclusive (i.e. U1 works with
both E and U4 to cause disease). Assuming these are the
only SCs of the disease, redundancy occurs if any
exposed individual acquires U1 and U4 during the study
period. Depending on the order of component acquisi-
tion, this could be pre-emption, or another type of
redundancy known as over-determination [4]. If the
shared component is not the last acquired component
of both SCs of disease (i.e. if U1 is acquired before U4),
then pre-emption occurs; one SC of disease must be ful-
filled before the other. If the shared component (U1) is
the last acquired component of both SCs of disease,
then the SCs of disease are fulfilled simultaneously,
which is over-determination.
In Figure 2: Dependent Mechanism B, redundancy

also arises from dependent processes. Although the cau-
sal partner of the exposure (U1) is exclusive, U1 shares
an antecedent component cause with a component
cause of disease in another SC. Assuming these are the
only SCs of the disease, redundancy occurs if any
exposed individual acquires U1, U2 and U3 during the
study period. Here, U1 and U3 share a Tier 2 common
cause, C1. The causal partner of E shares a causal com-
ponent with a component in an SC that does not
include the exposure, leading to dependent redundancy.
If C1 is not the last acquired component, then one SC
will be fulfilled before the other (pre-emption). If an

Tier 1: 

Independent Mechanism: Redundancy occurs 
if an individual exposed to E accumulates U1,
U2 and U3 before the end of the follow-up 
period, U1, U2 and U3 do not share any causal 
components 

Sufficient
cause 1 

Sufficient
cause 2 

DISEASE 

E    U1 U2   U3

Tier 1: 

Dependent Mechanism A: Redundancy occurs 
if an individual exposed to E accumulates U1
and U4 before the end of the follow-up period, 
U1 and U4 do not share any causal components 

Sufficient
cause 1 

Sufficient
cause 3 

DISEASE 

E    U1 U1   U4

Tier 1: 

Dependent Mechanism B: Redundancy occurs 
if an individual exposed to E accumulates U1,
U2 and U3 before the end of the follow-up 
period, U1 and U3 share a (Tier 2) causal 
component, C1

Sufficient 
cause 1 

Sufficient 
cause 2 

DISEASE 

E    U1 U2   U3

Tier 2: 

C1    X1 C1   X2

Figure 2 How redundancy arises from the perspective of the Sufficient Component Cause model (E is the exposure of interest).
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exposed individual has X1, X2 and U2, and the shared
component (C1) is the last acquired component, then
U1 and U3 are acquired simultaneously, and the SCs of
disease are fulfilled simultaneously (over-determination).

Determinants of the proportion of redundant
individuals
Redundancy occurs at the level of the individual; an
individual may or may not acquire more than 1 SC over
a given time period. As we show below, two factors
determine the proportion of redundant individuals in
the population: (1) the distribution of the components
in the population, and (2) the structure of the underly-
ing SCC model.

Distribution of components in the population
The proportion of redundant individuals in a population
increases with the prevalences of the components that
participate in the SCs of disease. For example, in the
Independent Mechanism depicted see Figure 2, the like-
lihood of acquiring both SC1 and SC2 (for an exposed
person) is equal to p(U1) * p(U2) * p(U3), where p(U1) is
equal to the prevalence of component U1, etc. As the
prevalence of any of these components increases, the
proportion of individuals who acquire both SC1 and
SC2 increases. For example, if p(U1), p(U2), p(U3) each
equal 40%, then 6.4% of the population will acquire SC1
and SC2 and thus have redundant SCs. All else equal, if
p(U2) increases to 60%, then 9.6% of the population will
acquire SC1 and SC2 and have redundant SCs.

Whether redundancy arises from independent or
dependent mechanisms
In the SC underlying Dependent Mechanism A in Fig-
ure 2, the likelihood of acquiring both SC1 and SC3 (for
an exposed person) is equal to p(U1) * p(U4). Compared
with the Independent Mechanism, there are more indi-
viduals who acquire both SCs of disease because these
SCs share a component. For example, if p(U1) and p(U4)
are each equal to 40%, 16% of the population will
acquire SC1 and SC3 and have redundant SCs. In the
SC underlying Dependent Mechanism B in Figure 2, the
proportion of redundant individuals (i.e. individuals who
acquire both SC1 and SC2) is also greater than in the
Independent Mechanism. For Dependent Mechanism B,
the proportion of redundant individuals would be calcu-
lated using the prevalence of U2 (Tier 1 component),
and the prevalences of C1, X1, and X2 (Tier 2
components).

How redundancy obscures causal identification
In this paper, we use Rothman’s definition of a cause - a
component is considered to be a cause if it was neces-
sary for the disease to occur at the moment it did in at

least one person in the population [22]. In other words,
a component is causal if it participated in the first ful-
filled SC of disease for at least one person, whether or
not this person would have become diseased at a later
time by acquiring another SC. The following discussion
assumes that our goal is to determine whether a particu-
lar component of interest (i.e. the exposure) meets this
definition of a cause, and is restricted to the causal
effect of the exposure in a group of people actually
exposed. Ideally, we would like to compare the disease
experience of each individual in a group of exposed peo-
ple to the group consisting of their counterfactuals. This
comparison between the risk of disease in the group of
exposed individuals and the risk of disease in the
same group of individuals under the condition of non-
exposure is referred to as a causal contrast, which is the
true but unobservable representation of the causal effect
of the exposure in a given population at a given time
(note: this is one of several causal contrasts) [23].
Causal contrasts are composed of two parts. The first

part of our contrast of interest is the proportion of dis-
eased people (i.e., risk of disease) among the exposed at
the end of a specified time period. The second part is
the proportion of diseased people among the exposed
had they not been exposed (i.e., the counterfactual risk
of disease). This causal contrast may refer to the full
etiologic effect, or a subset of the full etiologic effect, i.e.
the excess effect [3].

Distinction between etiologic and excess causation under
the SCC model
Greenland and Robins differentiated between two types
of diseased individuals that are germane to our work -
etiologic cases and excess cases [3]. An etiologic case is
any diseased individual for whom the exposure of inter-
est was a cause [1-3]. An excess case is any diseased
individual for whom the disease would not have
occurred by the end of the study period in the absence
of the exposure. The difference may appear subtle. For
an etiologic case, the exposure was necessary for disease
to occur at the moment it occurred. For an excess case,
the exposure was necessary for disease to occur at all.
All excess cases are etiologic cases, but an etiologic case
is only an excess case if the exposure was necessary for
the disease to occur by the end of the study period
[1-3].
We can express Greenland’s and Robin’s analytic dis-

tinction between etiologic and excess cases in terms of
the SCC model. An etiologic case is an individual who
developed the disease from a SC that included the expo-
sure of interest. An excess case is a type of etiologic
case who does not later, over the course of the study,
acquire any SC that excludes the exposure of interest
(i.e. a non-redundant etiologic case). We can therefore
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split etiologic cases into excess and redundant cases. An
etiologic redundant case is another type of etiologic case
who later, over the course of the study, acquires at least
one SC that excludes the exposure of interest. All etiolo-
gic cases are either excess or etiologic redundant cases.
In contrast to an etiologic case, a non-causal case is an
individual who developed the disease from a SC that
excludes the exposure. The relationship among etiologic,
excess, etiologic redundant and non-causal cases is illu-
strated in Figure 3.
The etiologic fraction, the proportion of cases for

whom the exposure was a cause, is equal to the number
of etiologic cases divided by the total number of dis-
eased people at the end of the study [1-3]. We can sub-
divide the etiologic fraction into the excess fraction and
etiologic redundant fraction. The excess fraction is the
subset of the etiologic fraction that is non-redundant
and is equal to the number of excess cases divided by
the total number of diseased [1-3]. The difference
between the etiologic fraction and the excess fraction is
the etiologic redundant fraction, i.e. the number of etio-
logic redundant cases (i.e. people who got the disease
from the exposure but would have gotten it from
another SC by the end of the study period) divided by

the total number of diseased. The non-causal fraction,
the proportion of cases for whom the exposure was not
a cause, is equal to the number of non-causal cases
divided by the total number of diseased people at the
end of the study. The relationship among etiologic,
excess, etiologic redundant and non-causal fractions is
also illustrated in Figure 3.
Below, we use disease response types to quantify these

fractions, as well as the etiologic and excess causal
effects and the discrepancy between them. We use the
response types as a tool because they are simple and
descriptive.

Further specification of response types
In their 1986 paper, Greenland and Robins [9] described
four possible disease responses to a given exposure:
doomed, susceptible-causative, susceptible-preventive
and immune. Response types reflect the way a person
will respond, in terms of disease outcome, to an expo-
sure by the end of a defined observation period. Since
these response types describe the disease status of
exposed individuals at the end of the observation period,
they assess the excess exposure effect. To assess the
etiologic exposure effect, we have adapted these

Non-diseased 

Number of Diseased

Etiologic
fraction = p2

Non-causal
fraction = p1 

Excess cases 
[2n]

Excess fraction  = pn
Redundant fraction = pr

[1n] [1r]

[4]

p4

Etiologic cases

Etiologic
redundant

cases
[2r]

Non-causal cases

Number of people in target population
Figure 3 Relationship among etiologic, excess, etiologic redundant cases and non-causal cases. Where, ‘p’ means proportion, ‘n’ means
non-redundant, and ‘r’ means redundant.
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response types (see endnote 3). Below, we describe three
possible disease responses to an exposure of interest;
non-causal cases, etiologic cases and non-diseased. The
response type of an exposed individual who becomes
diseased over the observation period is determined by
his/her constellation of components at the moment of
disease onset. In contrast, the response type of an
exposed individual who does not become diseased over
the observation period is determined by his or her con-
stellation of components at the end of the observation
period.
An exposed individual who first acquires a SC that

does not include the exposure of interest is a non-causal
case. The exposure has no effect on disease occurrence
among non-causal cases; these individuals are assigned
response type 1. An exposed individual who first
acquires the causal partners of the exposure is an etiolo-
gic case. For etiologic cases, the exposure determines
whether and when the disease occurs; these individuals
are assigned response type 2. An exposed individual
who does not acquire the causal partners of the expo-
sure and does not acquire another SC that does not
include the exposure is non-diseased. The exposure has
no effect on disease occurrence among the non-
diseased; these individuals are assigned response type 4
(see endnote 4).
For example, referring to Figure 2: Independent

Mechanism, an exposed person (i.e. someone who has
already acquired E) who then acquires U2 and U3 is a
non-causal (type 1) case. An exposed person who then
acquires U1 is an etiologic (type 2) case. And an exposed
person who does not acquire U1 or both U2 and U3 is
non-diseased (type 4).
The proportions of individuals in the population who

are non-causal cases, etiologic cases and non-diseased
are labeled as p1, p2 and p4, respectively (see Figure 3).
The proportion of people who develop the disease
under the condition of exposure is equal to the sum of
the proportions of non-causal and etiologic cases, or p1
+p2. The proportion of people who will develop the dis-
ease under the etiologic counterfactual condition, i.e., the
proportion of exposed individuals who would have been
diseased at their moment of disease onset had they not
been exposed, is equal to the proportion of non-causal
cases, or p1. However, the proportion of people in the
same population that will develop the disease under the
excess counterfactual condition, i.e. the proportion of
exposed that would have been diseased at the end of
the study had they not been exposed, includes both: (1)
the proportion of non-causal cases, and (2) the subset of
the etiologic cases who are etiologic redundant cases. As
we will later show, the proportion of etiologic redundant
cases is directly related to the extent to which redun-
dancy obscures causal identification.

To identify this subset of the etiologic fraction, we
must further specify these response types by distinguish-
ing between redundant and non-redundant cases. We
will refer to a person who acquires only one type of SC
of disease (i.e. SCs that include the exposure or SCs that
do not include the exposure, but not both types) over
the study period as “non-redundant”. We will refer to a
person who acquires both types of SC (where at least
one SC includes the exposure and one does not) as
“redundant”. Among the non-causal cases, we define a
person who only acquires a SC(s) that does not include
the exposure as a type 1n, where ‘1n’ refers to non-cau-
sal, non-redundant. Individuals who are type 1n develop
the disease from a SC that does not include the expo-
sure, and do not later acquire a SC that includes the
exposure. The proportion of individuals who are non-
causal, non-redundant over the study period is desig-
nated p1n. A non-causal case that acquires both types of
SC(s) is labeled a type 1r, where ‘1r’ refers to non-causal,
redundant. Individuals who are type 1r develop the dis-
ease from a SC that does not include the exposure but
later acquire another SC that does include the exposure.
The proportion of individuals who are non-causal,
redundant over the study period is designated p1r.
Likewise, among the etiologic cases, we define a per-

son who only acquires a SC(s) that includes the expo-
sure as a type 2n, where ‘2n’ refers to etiologic,
non-redundant. Individuals who are type 2n develop the
disease from a SC that includes the exposure, and do
not later acquire a SC that does not include the expo-
sure (i.e. type 2n individuals are excess cases). The pro-
portion of individuals who are etiologic, non-redundant
over the study period is designated p2n. An etiologic
case that acquires both types of SC(s) is labeled a type
2r, where ‘2r’ refers to etiologic, redundant. Individuals
who are type 2r develop the disease from a SC that
includes the exposure but later acquire a SC that does
not include the exposure. The proportion of individuals
who are etiologic, redundant over the study period is
designated p2r. Each of these specific response types,
and their contribution to the proportion of exposed dis-
eased individuals are labeled in Figure 3.

Relationship between relative etiologic effect and relative
excess effect
Using these proportions, we can calculate the relative
etiologic and excess causal contrasts. The numerator of
both RRetiology and RRexcess is the proportion of the
exposed who develop the disease by the end of the
study period; (p1+p2) or (p1n+p1r+p2n+p2r). However,
the denominators of RRetiology and RRexcess differ. The
denominator of RRetiology includes those individuals who
would have developed the disease at the moment they
did even in the absence of the exposure; p1 or (p1n
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+p1r). The calculation of RRetiology in terms of these spe-
cific response types is shown in Equation 1.

RR
(p1n+p1r+p2n+p2r)

(p1n+p1r)
etiology = (1)

The denominator of RRexcess includes all individual
who would have developed the disease by the end of the
study in the absence of the exposure. The denominator
of RRexcess includes: (i) those individuals who, in the
absence of the exposure, would have developed the dis-
ease at the moment they did; p1 or (p1n+p1r), and (ii)
those individuals who would have developed the disease
later over the study period; p2r. Thus, the denominator
of RRexcess is (p1

n+p1r+ p2r). The calculation of RRexcess

in terms of these specific response types is shown below
in Equation 2.

RR
(p1n+p1r+p2n+p2r)

(p1n+p1r+p2r)
excess = (2)

Thus, the only difference between RRetiology and RRex-

cess is p2r in the denominator of RRexcess. The relation-
ship between these causal contrasts can be expressed as
the ratio of RRexcess to RRetiology, which reduces to Equa-
tion 3.

RR RR
p1

(p1+p2r)
excess etiology/ = (3)

As Equation 3 shows, RRexcess underestimates RRetiol-

ogy to the extent that there are individuals who are etio-
logic redundant (i.e., type 2r) in the population. As p2r

increases relative to p1, the discrepancy between RRetiol-

ogy and RRexcess increases. As discussed earlier, p2r (and
p1r, though it has no effect on excess versus etiology)
will be larger as the prevalence of the components
increases and/or when redundancy arises from depen-
dent processes.
Here, we used the disease type notation to express the

excess and etiologic causal effects in a population of
people actually exposed. It is also possible to express
redundancy in a general way for target populations of
any size with varying exposure distribution (assuming
exposure is randomly distributed) and all forms of dis-
ease frequency measures. Using the notation in Maldo-
nado’s and Greenland’s paper “Estimating Causal
Effects” (2002) [23], we provide an alternative expression
of redundancy in Additional File 1.
In summary, the difference between RRexcess and RRe-

tiology is the extent that there are redundant, etiologic
cases in the population; the magnitude of this difference
is driven by the structure of the SCC model and the

prevalence of its components. Given that both RRexcess

and RRetiology are both causal contrasts, there are two
possible counterfactuals for the exposed. In addition to
specifying whether the causal effect for the exposed, the
unexposed or the entire population is of interest, epide-
miologists should also specify whether the excess or
etiologic causal effect is of interest. Because we are
inherently interested in identifying causes, we concep-
tualize the excess effect as an underestimate of the etio-
logic effect. In the illustrative example below, we
demonstrate the extent to which RRexcess can underesti-
mate RRetiology.

Numeric example: A hypothetical study of 200 people
To make the remaining discussion less abstract, we use
the simplistic hypothetical causal model for liver cancer
shown in Figure 4. In this hypothetical causal model,
there are six dichotomous causal components that make
up two SCs of disease. Supposing these are the only
causes of liver cancer, an individual can either get liver
cancer from exposure to: (1) a metabolic polymorphism
of the glutathione-S-transferase gene (the GSTm1 dele-
tion), aflatoxin and U1, or (2) hepatitis C infection, alco-
hol and U2.
An exposed individual (i.e. a person with the GSTm1

deletion) who acquires hepatitis C, alcohol and U2

before acquiring aflatoxin and U1, is a non-causal (type
1) case. An exposed individual who acquires aflatoxin
and U1 before acquiring hepatitis C, alcohol and U2 is
an etiologic (type 2) case. An exposed individual who
does not acquire both aflatoxin and U1 and does not
acquire hepatitis C, alcohol and U2 is non-diseased (type
4).
Imagine a researcher began with 100 pairs of indivi-

duals who were identical except for their GSTm1 status;
100 individuals had the GSTm1 deletion and 100 did
not. The individuals with the deletion were exposed,

U1

GSTm1
deletion

Sufficient cause 1 Sufficient cause 2 

Liver Cancer 

aflatoxin alcohol
hepatitis

C
U2

Figure 4 Illustrative hypothetical example: two sufficient
causes of liver cancer.
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and the individuals with normal GSTm1 were their
counterfactuals. Furthermore, (for simplicity) imagine
that all 200 individuals had components U1 and U2 at
the start of observation.
Since the researcher did not know when the indivi-

duals will develop liver cancer (i.e. the induction period
is unknown), she decided to follow the study population
for 12 years. Imagine that liver cancer is immediately
apparent and the researcher had a perfect diagnostic
test and so did not need to account for a latency period.
By the end of the study period, five of 100 exposed and
3 of 100 unexposed individuals were diseased. The risk
of disease among the exposed by the end of the 12-year
period was 0.05 (5/100), the risk of disease among the
unexposed by the end of the same time period was 0.03
(3/100), and observed risk ratio (RRobserved) was 1.7
(0.05/0.03).
Figure 5 displays the component acquisition and dis-

ease experience of the exposed individuals who devel-
oped liver cancer over the 12-year study period (labeled
GD1 through GD5) and their unexposed counterparts
(labeled GN1 through GN5). In addition to the 10 indi-
viduals shown in Figure 5, the study included 95
exposed people who remained non-diseased and their
95 unexposed counterparts who also remained non-

diseased. For diseased individuals, the last component
needed to first complete a SC is shown in bold font. In
addition, each individual’s disease status at the end of
the study and specific response type are shown.
Assigning specific response types requires we examine

the moment that each exposed individual developed the
disease. If we examine the bolded factors in Figure 5, we
can identify the moment of disease onset of each
exposed individual (GD1 through GD5). Persons GD2
and GD4 were non-causal cases (types 1n and 1r,
respectively), GD1 and GD5 were excess cases (type 2n)
and GD3 was an etiologic redundant case (type 2r).
Therefore, p1 was 0.02 (2/100), p2n was 0.02 (2/100)
and p2r was 0.01 (1/100). RRexcess is 1.7 [(0.02+0.02
+0.01)/(0.02+0.01)]. Since the unexposed group repre-
sents the counterfactuals for the exposed group (i.e.
there is no confounding or bias), RRobserved is equal to
RRexcess.
RRetiology is 2.5 [(0.02+0.02+0.01)/0.02]. Persons GD3

and GN3 are the only pair in which the disease status of
the unexposed counterpart at year 12 is not equivalent to
his/her disease status at the moment the exposed person
became diseased. From the moment that GD3 and GN3
were exposed to alcohol, the SCs for GD3 were redun-
dant and the counterpart, GN3, became diseased from

Obs.

Person-years of observation: Dz
status
at year 

12a

Specific
response

type 
PYOsd

1 2 3 4 5 6 7 8 9 10 11 12 

GD1 AFL           + 2n 2 

GD2 HEP ALC   + 1n 10 

GD3 HEP AFL    ALC     + 2r 4 

GD4 HEP ALC      AFL  + 1r 5 

GD5 AFL       + 2n 6 

GN1 AFL  - NA 12 

GN2 HEP ALC   + NA 10

GN3 HEP AFL ALC     + NA 8

GN4 HEP ALC      AFL  + NA 5

GN5 AFL  - NA 12

Start: y :dnE0rae year 12

(a) Liver cancer is caused by the presence of the GSTm1 deletion, aflatoxin (AFL) and U1, or by the presence of hepatitis C 
infection (HEP), alcohol exposure (ALC) and U2. In this example, all individuals have U1 and U2 at the start of observation. 

(b) PYOs = persons-years of observation contributed by each study subject 

E
xp
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:
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Tm

1
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tio

n
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Tm
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Figure 5 Acquisition of components and disease (Dz) status for liver cancer (based on the hypothetical causal model shown in Figure
4) in ten individuals over the course of a 12 year study.
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SC2. At this moment, GN3 was no longer an appropriate
comparison for GD3. As a result, RRetiology was underesti-
mated by RRexcess.
Figure 5 also shows that there was also redundancy of

SCs for GD4. After developing the disease from SC 2,
GD4 also acquired aflatoxin, fulfilling SC 1. In this cir-
cumstance, the disease status of the counterpart (GN4) at
the end of the study was equivalent to the disease status
he or she had at the moment GD4 became diseased.
Therefore, GN4 was an appropriate comparison for GD4,
and the relationship between RRexcess and RRetiology was
unaffected by this pair.
The researcher could correctly conclude that the

GSTm1 deletion yielded a relative excess risk of disease
of 1.7. However, she could not determine the full etiolo-
gic effect of the deletion. Using Equation 3, we can see
that the researcher captured 67% [0.02/(0.02 + 0.01) =
0.67] of the relative etiologic effect, or conversely that
she missed 33%.
In this example, one etiologic redundant case among

the 100 exposed people (person GD3) resulted in an
appreciable underestimation of the etiologic effect.
Clearly, the underestimation would have been more
severe had there been more etiologic redundant cases.
For instance, if GD1 had also been an etiologic redun-
dant case, the etiologic effect would remain the same,
while the observed RR would have been 1.25 [(5/100)/
(4/100) = 1.25]. In this case, the researcher would have
missed 50% [1-(0.02/(0.02 + 0.02)) = 0.50] of the relative
etiologic effect.
Even in the absence of confounding and bias, our stu-

dies underestimate the etiologic effect to the extent that
there are etiologic redundant cases in the study popula-
tion by the end of the study period. Because the pre-
sence of redundancy is related to when we compare
exposed and unexposed people, it may seem intuitive
that we may be able to avoid or correct this underesti-
mation. In discussing the problem of redundancy with
colleagues, we find that epidemiologists often believe
that redundancy is a latency issue, or can be resolved
using matching and/or rate-based measures. However,
as we discuss below, this is not the case.

Can redundancy be avoided or resolved?
The relationship between latency and redundancy
Redundancy occurs because there is a gap between the
onset of disease in an exposed individual and when we
compare the disease statuses of exposed and unexposed
individuals. This gap allows exposed individuals to
acquire more than one SC of disease, implying that
minimizing this gap can reduce or avoid redundancy.
To see the causal effect of the exposure, we must

compare the disease status of exposed and unexposed
individuals after the disease is detectable in the exposed.

When the disease event is detectable at onset (e.g.
severe myocardial infarction, death, etc.), we theoreti-
cally can avoid redundancy by comparing the disease
status of perfectly matched exposed and unexposed peo-
ple at the moment of disease onset in the exposed (even
if retrospectively). When the disease event is not detect-
able at onset (e.g. cancer, depression, etc.), we can avoid
redundancy by comparing the disease status of an
exposed-unexposed pair: (1) before they acquire another
cause (i.e. before redundancy occurs), or (2) after they
acquire another cause (i.e. after redundancy occurs) but
before the disease is detectable in the unexposed. The
full causal effect can be identified if we make our com-
parison after the latency period (i.e. the period after
onset until the disease is detectable) ends in the
exposed, but before the latency period ends in the
unexposed.
Whether or not there is a latency period, redundancy

can theoretically be avoided by comparing the disease
status of a perfectly matched exposed and unexposed
pair at the moment the disease was detectable in the
exposed. (i.e. the moment of disease onset if there were
no latency period). Even if it was possible to diagnose
every individual at the moment the disease was detect-
able, our current effect measures cannot accommodate
this information. Rather, our measures compare the dis-
ease status of groups of exposed and unexposed by the
end of the study period. As shown above, even when
only one exposed individual is an etiologic redundant
case, the etiologic effect is underestimated.

Matching
To minimize confounding and bias, epidemiologists
employ various techniques to balance risk factors across
the exposed and unexposed groups. One way to do this is
to match exposed and unexposed individuals on other
causes of disease that we think are imbalanced across the
exposed and unexposed groups (i.e. suspected confoun-
ders). If all confounders are captured, matching avoids
confounding. However, redundancy is a more subtle
issue. To avoid redundancy, we would need to: 1) match
exposed and unexposed individuals on all known and
unknown risk factors, including those imbalanced (i.e.
confounders) and those balanced (i.e. non-confounding
causes of disease) across exposure groups, 2) match the
individuals on the timing of acquisition of those risk fac-
tors, and 3) remove the unexposed counterpart for each
individual from the population at risk at the moment
each exposed person becomes diseased. Clearly, this is
not within the realm of our current methods.

Rate-based comparisons
As explained above, risk-based measures reflect disease
occurrence by the end of the study. Since rate-based
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measures take into account when a person is diagnosed,
it may seem intuitive that rate-based measures would be
immune to the effects of redundancy. However, rates do
not entirely resolve redundancy.
Unlike risk-based comparisons, rate-based compari-

sons are concerned with what happens to a group of
people over time. In the absence of confounding and
bias, rate-based measures indicate when an exposure
causes individuals to develop disease earlier than they
would have otherwise. However, rate-based measures do
not validly estimate the etiologic effect. Under some cir-
cumstances when risk-based measures underestimate
the etiologic effect of an exposure, rate-based measures
can better estimate the full etiologic effect. Under other
circumstances, rate-based measures can also materially
underestimate the etiologic effect.
The observed rate of disease in a group of exposed

people is the number of diseased (D) as a proportion of
the exposed person-time at risk (PTE) by the end of a
specified time period [p(D | PTE)] [22,24]. The observed
rate of disease in a group of unexposed people is the
number of diseased (D) as a proportion of the unex-
posed person-time at risk (PTe) by the end of the same
time period [p(D | PTe)] [22,24]. We refer to the
observed rate ratio as IRobserved (see endnote 5). The cal-
culation of IRobserved is shown in Equation 4 [22,24].

IR
p(D|PT E)
p(D|PTe)observed = (4)

We can use the previous numerical example to inves-
tigate the utility of rates in estimating the etiologic effect
when redundancy occurs (see Figure 5). Rather than
waiting until the end of year 12, imagine the researcher
tested each individual for liver cancer at the end of each
year and thus knew the year each person became dis-
eased. The person-time at risk for each individual
(defined here as the number of years including the year
of disease onset that each person was disease-free) is
shaded and is expressed numerically as person-years of
observation (PYOs).
There were 1,167 PYOs among the exposed (GSTm1

deletion); 27 PYOs among those shown in Figure 5 and
1,140 PYOs among the remaining 95 exposed indivi-
duals (95 people * 12 years = 1,140). There were 1,187
PYOs among the unexposed (GSTm1 normal); 47 PYOs
among those shown in Figure 5 and 1,140 PYOs among
the remaining 95 unexposed individuals. The rate of dis-
ease among the exposed by the end of the 12-year per-
iod was 0.0043 per person-year (5/1,167) and the rate of
disease among the unexposed by the end of the study
was 0.0025 per person-year (3/1,187). By multiplying by
12, the number of years of follow-up, we can express
IRobserved in the same units of time as the causal

contrasts. Therefore, the IRobserved was 1.7 per 12 per-
son-years [(0.0043*12)/(0.0025*12)].
Despite the fact that: (1) this is the best-case scenario in

which there is no confounding or bias, and (2) rates take
into account when each individual became diseased - the
researcher cannot determine the full etiologic effect of
the deletion. As with risk-based measures, rate-based
measures do not compare the disease status of perfectly
matched pairs of exposed individuals and their unex-
posed counterparts at the moment the exposed are diag-
nosed. As a result, when redundancy occurs, the number
of diseased in the unexposed at the end of the study is
greater then the number of diseased in the exposed if the
exposure had been absent at the moment of disease
onset.
Rate-based measures can only precisely estimate the

etiologic effect under the same conditions as risk-based
measures; after the exposed person becomes diseased,
the unexposed person should not contribute to either
the number of diseased or the person-time among the
unexposed group. Thus, the total person-time in the
exposed and unexposed groups would cancel out and
the “rate ratio” would be equivalent to the etiologic
effect (if the person-time cancels out, the rate ratio
becomes a risk ratio). Although incorporating person-
time makes it apparent when there are some people
who get disease earlier if exposed (which tells us that
the exposure has some etiologic effect), it does not
resolve the fact that the number of diseased within the
unexposed is an overestimation of the number of dis-
eased within the counterfactual group. In fact, in their
1988 paper, Greenland and Robins demonstrate that the
incidence density fraction (or, rate fraction) is not
necessarily equivalent to either the etiologic or excess
fractions [3]. The same is true for the rate ratio.
In summary, estimation of the etiologic effect of an

exposure requires that the disease status of exposed
individuals be compared with the disease status of their
unexposed counterparts at the moment the disease is
detectable in the exposed. This necessitates that: (1)
each unexposed person provides a perfect proxy for the
counterfactual disease risk in his/her exposed counter-
part, (2) we watch people over time and assess their dis-
ease status soon after onset (or soon after the disease is
detectable), (3) that our measures use this information
to compare exposed persons to their unexposed coun-
terparts at the moment of diagnosis in the exposed, and
4) we remove the unexposed person from the popula-
tion at risk when the exposed counterpart becomes dis-
eased. Our current measures do not do this; even if
conditions 1 and 2 are met, the disease status of a
group of exposed people is compared with that of a
group of unexposed people by the end of the study per-
iod (condition 3 is not met). Furthermore, the
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unexposed counterparts are not removed from the
population at risk when the exposed are diagnosed (con-
dition 4 is also not met). As a result, both risk- and
rate-based measures are affected by redundancy.

Conclusion
Redundancy, the acquisition of multiple sufficient causes
of disease by an individual over a given observation per-
iod, causes a discrepancy between the excess and full
etiologic effects of a cause. Even in the absence of con-
founding and bias, the observed risk ratio represents
only a subset of the full etiologic effect. The proportion
of redundant individuals among etiologic cases is
reflected in the discrepancy between the etiologic effect
necessary to identify causes and the excess effect we are
able to estimate. For an individual, redundancy could be
avoided if we compared the exposed person to his/her
unexposed counterpart precisely at that moment disease
was detectable. However, our methods, including rate-
based measures, do not allow us to compare perfectly
matched pairs of exposed and unexposed individuals. In
other words, epidemiology cannot find the causal effect
for an individual; it can only find the average causal
effect across individuals. Thus, even in the best-case sce-
nario where we know the moment of disease onset for
each individual in a study, we cannot precisely estimate
the full causal effect. Even if precise estimation is not
our goal, to the extent that redundancy exists, we may
incorrectly conclude that the exposure is not causal.
Our liver cancer example demonstrates how causal

identification can be impeded when there is redundancy
of sufficient causes with mutually exclusive and inde-
pendent components (i.e. redundancy arising from an
Independent Mechanism). This scenario is illustrated in
Figure 4, where none of the sufficient causes share any
components and there are no associations between any
components. This illustrates that even in the simplest
scenarios, redundancy can influence our effect estimates.
However, there are more complex scenarios in which
redundancy may be more profound. In fact, the under-
estimation will be worse under any causal model in
which the proportion of etiologic redundant cases rela-
tive to the baseline risk increases. For instance, under a
causal model with many sufficient causes that do not
include the component of interest, there will be more
individuals with redundant response types (both etiolo-
gic and non-causal redundant cases) because they are
more likely to acquire more than 1 sufficient cause by
chance. The proportion of redundant individuals will
also increase if a causal partner of the exposure of inter-
est also participates in a sufficient cause that does not
include the exposure. In addition, if there is ordering of
a causal partner and a component in another sufficient

cause in time (e.g. people who acquire both causes are
more likely to be etiologic redundant cases than non-
causal redundant cases), the impact of redundancy may
be more severe.
Epidemiologists consider an effect estimate for the

exposed to be valid if the risk of disease in the unex-
posed group is equal to the risk of disease from other
causes in the exposed. Nonetheless, valid effect esti-
mates may still underestimate the full etiologic effect of
an exposure. To ensure that we are measuring the full
effect of an exposure, either redundancy must not exist,
or we must develop new methods to account for the
impact of redundancy. This problem is not isolated to
observational epidemiology. Even in a randomized trial,
where it is more likely that confounding and bias are
absent, redundancy can impede causal identification.
Furthermore, redundancy may prevent us from identi-

fying effective interventions. Imagine we want to reduce
the burden of liver cancer in some population. Suppose
that (based on the causal model in Figure 4) sufficient
cause 1 is much more prevalent (i.e. a much more
important cause of the disease) in this population than
sufficient cause 2, and sufficient cause 1 is almost always
completed first. This might be the case in a population
that is exposed to dietary aflatoxin during childhood,
but is exposed to hepatitis C and alcohol exposure in
later years. Imagine we conduct a study to determine
whether aflatoxin (an exposure on which we can inter-
vene) is a cause of disease in this population, but we
miss its causal effect or regard it as unimportant due to
redundancy. Then in a later study, we identify alcohol
as cause of liver cancer and decide to reduce the pro-
portion exposed to alcohol. However, our intervention is
unsuccessful - the prevalence of liver cancer is nearly as
high as before we intervened since we have not elimi-
nated the more important (and earlier onset) cause, suf-
ficient cause 1.
The consequences of redundancy may be profound. In

subsequent papers, we will examine the circumstances
under which redundancy is likely to impede causal iden-
tification and quantify the impact on effect estimates
using simulated data. Other next steps include charac-
terizing the impact of redundant causation in the pre-
sence of preventive effects (i.e. the situation in which
the exposure of interest is simultaneously causative and
preventive), and understanding the impact of redundant
causation in the context of confounding or bias.

Additional material

Additional file 1: Alternative expression of etiologic and excess
causal effects.
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Endnotes
1. We use to the term “acquires” to mean “is or becomes exposed to” a
component cause in an SCC model. We chose this term to avoid confusion
between “being exposed” (i.e. having the exposure of interest) and having
or getting another “exposure” (i.e. another causal component).
2. Under the SSC model depicted in Figure 2: Independent Mechanism, it is
theoretically possible that, by chance, an individual simultaneously acquires
the components of more than 1 SC, resulting in overdetermination.
3. Our adaptation of Greenland and Robin’s [9] original response type
schema further specifies the response types to reflect how and when a
person becomes diseased, in addition to whether s/he becomes diseased
over a specified time period under the condition of being exposed or
unexposed.
4. Our response type schema includes response types 1, 2 and 4 but
excludes response type 3 for consistency with the response type schema
developed by Greenland and Robins [9]. Response type 3 is reserved to
describe individuals who acquire all of the other components of a sufficient
cause that requires the absence of the exposure of interest to cause disease,
such that if not exposed they get the disease from that sufficient cause.
Although for many diseases all four response types are reasonable, for
simplicity, our work only considers causal scenarios in which the exposure is
not simultaneously causal and preventive.
5. We use the letter “I” to indicate when a measure is based on rates
because the rate is also referred to as the incidence density.
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